Maximum likelihood estimation in the context of a sub-ballistic random walk in a parametric random environment

被引:5
|
作者
Falconnet M. [1 ]
Gloter A. [1 ]
Loukianova D. [1 ]
机构
[1] LaMME, Univ. d’Évry Val d’Essonne, UMR 8071, USC INRA, Evry
关键词
asymptotic normality; Cramér-Rao efficiency; maximum likelihood estimation; random walk in random environment;
D O I
10.3103/S1066530714030016
中图分类号
学科分类号
摘要
We consider a one-dimensional sub-ballistic random walk evolving in a parametric i.i.d. random environment. We study the asymptotic properties of the maximum likelihood estimator (MLE) of the parameter based on a single observation of the path till the time it reaches a distant site. For that purpose, we adapt the method developed in the ballistic case by Comets et al. (2014) and Falconnet et al. (2014). Using a supplementary assumption due to the special nature of the sub-ballistic regime, we prove consistency and asymptotic normality as the distant site tends to infinity. To emphasize the role of the additional assumption, we investigate the Temkin model with unknown support, and it turns out that the MLE is consistent but, unlike the ballistic regime, the Fisher information is infinite. We also explore the numerical performance of our estimation procedure. © 2014, Allerton Press, Inc.
引用
收藏
页码:159 / 175
页数:16
相关论文
共 50 条
  • [1] Sub-ballistic random walk in Dirichlet environment
    Bouchet, Elodie
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 25
  • [2] Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment
    Comets, Francis
    Falconnet, Mikael
    Loukianov, Oleg
    Loukianova, Dasha
    Matias, Catherine
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 268 - 288
  • [3] Asymptotic normality and efficiency of the maximum likelihood estimator for the parameter of a ballistic random walk in a random environment
    Falconnet M.
    Loukianova D.
    Matias C.
    [J]. Mathematical Methods of Statistics, 2014, 23 (1) : 1 - 19
  • [4] Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support
    Comets, Francis
    Falconnet, Mikael
    Loukianov, Oleg
    Loukianova, Dasha
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (11) : 3578 - 3604
  • [5] Hydrodynamic limit for a system of independent, sub-ballistic random walks in a common random environment
    Jara, Milton
    Peterson, Jonathon
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1747 - 1792
  • [6] BALLISTIC AND SUB-BALLISTIC MOTION OF INTERFACES IN A FIELD OF RANDOM OBSTACLES
    Dondl, Patrick W.
    Scheutzow, Michael
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (05): : 3189 - 3200
  • [7] SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES
    Fribergh, Alexander
    Kious, Daniel
    [J]. ANNALS OF PROBABILITY, 2018, 46 (02): : 605 - 686
  • [8] Maximum likelihood estimation for a nearly random walk model
    Man, KS
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (03) : 677 - 697
  • [9] AGING AND QUENCHED LOCALIZATION FOR ONE-DIMENSIONAL RANDOM WALKS IN RANDOM ENVIRONMENT IN THE SUB-BALLISTIC REGIME
    Enriquez, Nathanael
    Sabot, Christophe
    Zindy, Olivier
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (03): : 423 - 452
  • [10] Limit theorem for sub-ballistic Random Walks in Dirichlet Environment in dimension d > 3
    Poudevigne-Auboiron, Remy
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 66