BALLISTIC AND SUB-BALLISTIC MOTION OF INTERFACES IN A FIELD OF RANDOM OBSTACLES

被引:7
|
作者
Dondl, Patrick W. [1 ]
Scheutzow, Michael [2 ]
机构
[1] Albert Ludwigs Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[2] Tech Univ Berlin, Inst Math, Fak 2, Sekr MA 7-5,Str 17 Juni 136, D-10623 Berlin, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
Interfaces; heterogeneous media; random media; asymptotic behavior of nonnegative solutions; RANDOM-COEFFICIENTS; RANDOM-MEDIA; DYNAMICS;
D O I
10.1214/17-AAP1279
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a discretized version of the quenched Edwards-Wilkinson model for the propagation of a driven interface through a random field of obstacles. Our model consists of a system of ordinary differential equations on a d-dimensional lattice coupled by the discrete Laplacian. At each lattice point, the system is subject to a constant driving force and a random obstacle force impeding free propagation. The obstacle force depends on the current state of the solution, and thus renders the problem nonlinear. For independent and identically distributed obstacle strengths with an exponential moment, we prove ballistic propagation (i.e., propagation with a positive velocity) of the interface if the driving force is large enough. For a specific case of dependent obstacles, we show that no stationary solution exists, but still the propagation of the front is not ballistic.
引用
收藏
页码:3189 / 3200
页数:12
相关论文
共 50 条
  • [1] Sub-ballistic random walk in Dirichlet environment
    Bouchet, Elodie
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 25
  • [2] SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES
    Fribergh, Alexander
    Kious, Daniel
    [J]. ANNALS OF PROBABILITY, 2018, 46 (02): : 605 - 686
  • [3] Maximum likelihood estimation in the context of a sub-ballistic random walk in a parametric random environment
    Falconnet M.
    Gloter A.
    Loukianova D.
    [J]. Mathematical Methods of Statistics, 2014, 23 (3) : 159 - 175
  • [4] Self-Avoiding Walk is Sub-Ballistic
    Duminil-Copin, Hugo
    Hammond, Alan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (02) : 401 - 423
  • [5] Hydrodynamic limit for a system of independent, sub-ballistic random walks in a common random environment
    Jara, Milton
    Peterson, Jonathon
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1747 - 1792
  • [6] Sub-ballistic behavior in the quantum kicked rotor
    Romanelli, A.
    Auyuanet, A.
    Siri, R.
    Micenmacher, V.
    [J]. PHYSICS LETTERS A, 2007, 365 (03) : 200 - 203
  • [7] Self-Avoiding Walk is Sub-Ballistic
    Hugo Duminil-Copin
    Alan Hammond
    [J]. Communications in Mathematical Physics, 2013, 324 : 401 - 423
  • [8] Sub-ballistic Growth of Renyi Entropies due to Diffusion
    Rakovszky, Tibor
    Pollmann, Frank
    von Keyserlingk, C. W.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [9] Scaling of Sub-Ballistic 1D Random Walks Among Biased Random Conductances
    Berger, Q.
    Salvi, M.
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (01) : 171 - 187
  • [10] Limit theorem for sub-ballistic Random Walks in Dirichlet Environment in dimension d > 3
    Poudevigne-Auboiron, Remy
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 66