BALLISTIC AND SUB-BALLISTIC MOTION OF INTERFACES IN A FIELD OF RANDOM OBSTACLES

被引:7
|
作者
Dondl, Patrick W. [1 ]
Scheutzow, Michael [2 ]
机构
[1] Albert Ludwigs Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[2] Tech Univ Berlin, Inst Math, Fak 2, Sekr MA 7-5,Str 17 Juni 136, D-10623 Berlin, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
Interfaces; heterogeneous media; random media; asymptotic behavior of nonnegative solutions; RANDOM-COEFFICIENTS; RANDOM-MEDIA; DYNAMICS;
D O I
10.1214/17-AAP1279
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a discretized version of the quenched Edwards-Wilkinson model for the propagation of a driven interface through a random field of obstacles. Our model consists of a system of ordinary differential equations on a d-dimensional lattice coupled by the discrete Laplacian. At each lattice point, the system is subject to a constant driving force and a random obstacle force impeding free propagation. The obstacle force depends on the current state of the solution, and thus renders the problem nonlinear. For independent and identically distributed obstacle strengths with an exponential moment, we prove ballistic propagation (i.e., propagation with a positive velocity) of the interface if the driving force is large enough. For a specific case of dependent obstacles, we show that no stationary solution exists, but still the propagation of the front is not ballistic.
引用
收藏
页码:3189 / 3200
页数:12
相关论文
共 50 条
  • [41] Magnetic field line separation by random ballistic decorrelation in transverse magnetic turbulence
    Yannawa, C.
    Pongkitiwanichakul, P.
    Ruffolo, D.
    Chuychai, P.
    Sonsrettee, W.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (04) : 5098 - 5106
  • [42] Transition from ballistic to drift motion in high-field transport in GaAs
    Bowlan, P.
    Kuehn, W.
    Reimann, K.
    Woerner, M.
    Elsaesser, T.
    Hey, R.
    Flytzanis, C.
    [J]. XVIIITH INTERNATIONAL CONFERENCE ON ULTRAFAST PHENOMENA, 2013, 41
  • [43] Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment
    Peterson, Jonathon
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 685 - 709
  • [44] Resistance Coefficient Identification of Ballistic with Random Wind
    Wang, Xin
    Wang, Yuxin
    Yao, Jun
    [J]. 2011 6TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2011, : 748 - 752
  • [45] CONCENTRATION EFFECTS IN RANDOM BALLISTIC DEPOSITION WITH RESTRUCTURING
    JULLIEN, R
    MEAKIN, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (06): : L219 - L224
  • [46] ROUGHENING TRANSITION AND PERCOLATION IN RANDOM BALLISTIC DEPOSITION
    PELLEGRINI, YP
    JULLIEN, R
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (15) : 1745 - 1748
  • [47] Random ballistic growth and diffusion in symmetric spaces
    Gorsky, A.
    Nechaev, S.
    Santachiara, R.
    Schehr, G.
    [J]. NUCLEAR PHYSICS B, 2012, 862 (01) : 167 - 192
  • [48] BALLISTIC ELECTRON-EMISSION MICROSCOPY OF SEMICONDUCTOR INTERFACES
    WILLIAMS, RH
    [J]. INSTITUTE OF PHYSICS CONFERENCE SERIES, 1991, (117): : 245 - 252
  • [49] Quasiparticle current in ballistic constrictions with finite transparencies of interfaces
    Aminov, BA
    Golubov, AA
    Kupriyanov, MY
    [J]. PHYSICAL REVIEW B, 1996, 53 (01) : 365 - 373
  • [50] Ellipticity criteria for ballistic behavior of random walks in random environment
    David Campos
    Alejandro F. Ramírez
    [J]. Probability Theory and Related Fields, 2014, 160 : 189 - 251