Scaling of Sub-Ballistic 1D Random Walks Among Biased Random Conductances

被引:0
|
作者
Berger, Q. [1 ]
Salvi, M. [2 ,3 ]
机构
[1] Sorbonne Univ, LPSM, UMR 8001, Campus Pierre & Marie Curie,4 Pl Jussieu,Case 158, F-75252 Paris 5, France
[2] Ecole Polytech, CNRS, CMAP, Route Saclay, F-91128 Palaiseau, France
[3] INRA, UR Math & Informat Appl 0341, F-78350 Jouy En Josas, France
基金
欧盟地平线“2020”;
关键词
random walk; random environment; limit theorems; conductance model; Mott random walk; TRANSIENT RANDOM-WALKS; RANDOM ENVIRONMENT; LIMITS; SPEED;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two models of one-dimensional random walks among biased i.i.d. random conductances: the first is the classical exponential tilt of the conductances, while the second comes from the effect of adding an external field to a random walk on a point process (the bias depending on the distance between points). We study the case when the walk is transient to the right but sub-ballistic, and identify the correct scaling of the random walk: we find alpha is an element of [0, 1] such that log X-n/log n -> alpha. Interestingly, alpha does not depend on the intensity of the bias in the first case, but it does in the second case.
引用
收藏
页码:171 / 187
页数:17
相关论文
共 50 条
  • [1] SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES
    Fribergh, Alexander
    Kious, Daniel
    [J]. ANNALS OF PROBABILITY, 2018, 46 (02): : 605 - 686
  • [2] Scaling limit of sub-ballistic 1D random walk among biased conductances: a story of wells and walls
    Berger, Quentin
    Salvi, Michele
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [3] Regularity of biased 1D random walks in random environment
    Faggionato, Alessandra
    Salvi, Michele
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 1213 - 1248
  • [4] Hydrodynamic limit for a system of independent, sub-ballistic random walks in a common random environment
    Jara, Milton
    Peterson, Jonathon
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1747 - 1792
  • [5] Limit theorem for sub-ballistic Random Walks in Dirichlet Environment in dimension d > 3
    Poudevigne-Auboiron, Remy
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 66
  • [6] AGING AND QUENCHED LOCALIZATION FOR ONE-DIMENSIONAL RANDOM WALKS IN RANDOM ENVIRONMENT IN THE SUB-BALLISTIC REGIME
    Enriquez, Nathanael
    Sabot, Christophe
    Zindy, Olivier
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (03): : 423 - 452
  • [7] Sub-ballistic random walk in Dirichlet environment
    Bouchet, Elodie
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 25
  • [8] On the speed of Random Walks among Random Conductances
    Berger, Noam
    Salvi, Michele
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (02): : 1063 - 1083
  • [9] On symmetric random walks with random conductances on ℤd
    L.R.G. Fontes
    P. Mathieu
    [J]. Probability Theory and Related Fields, 2006, 134 : 565 - 602
  • [10] BALLISTIC AND SUB-BALLISTIC MOTION OF INTERFACES IN A FIELD OF RANDOM OBSTACLES
    Dondl, Patrick W.
    Scheutzow, Michael
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (05): : 3189 - 3200