Globally convergent BFGS method for nonsmooth convex optimization

被引:15
|
作者
Rauf, AI [1 ]
Fukushima, M
机构
[1] Hamdard Univ, Islamabad, Pakistan
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto, Japan
关键词
nonsmooth convex optimization; Moreau-Yosida regularization; strong convexity; inexact function and gradient evaluations; BFGS method;
D O I
10.1023/A:1004633524446
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose an implementable BFGS method for solving a nonsmooth convex optimization problem by converting the original objective function into a once continuously differentiable function by way of the Moreau-Yosida regularization. The proposed method makes use of approximate function and gradient values of the Moreau-Yosida regularization instead of the corresponding exact values. We prove the global convergence of the proposed method under the assumption of strong convexity of the objective function.
引用
收藏
页码:539 / 558
页数:20
相关论文
共 50 条
  • [1] Globally Convergent BFGS Method for Nonsmooth Convex Optimization1
    A. I. Rauf
    M. Fukushima
    [J]. Journal of Optimization Theory and Applications, 2000, 104 : 539 - 558
  • [2] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Boris S. Mordukhovich
    Xiaoming Yuan
    Shangzhi Zeng
    Jin Zhang
    [J]. Mathematical Programming, 2023, 198 : 899 - 936
  • [3] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Mordukhovich, Boris S.
    Yuan, Xiaoming
    Zeng, Shangzhi
    Zhang, Jin
    [J]. MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 899 - 936
  • [4] Globally convergent variable metric method for convex nonsmooth unconstrained minimization
    Luksan, L
    Vlcek, J
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (03) : 593 - 613
  • [5] A globally convergent BFGS method with nonmonotone line search for non-convex minimization
    Xiao, Yunhai
    Sun, Huijuan
    Wang, Zhiguo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (01) : 95 - 106
  • [6] A globally and superlinearly convergent algorithm for nonsmooth convex minimization
    Fukushima, M
    Qi, LQ
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (04) : 1106 - 1120
  • [7] A note on "A globally convergent BFGS method with nonmonotone line search for non-convex minimization"
    Zhang, Li
    Chen, Xinlong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 764 - 766
  • [8] A GLOBALLY CONVERGENT BFGS METHOD FOR SYMMETRIC NONLINEAR EQUATIONS
    Zhou, Weijun
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (02) : 1295 - 1303
  • [9] Globally Convergent Variable Metric Method for Convex Nonsmooth Unconstrained Minimization1
    L. Lukšan
    J. Vlček
    [J]. Journal of Optimization Theory and Applications, 1999, 102 : 593 - 613
  • [10] A globally convergent descent method for nonsmooth variational inequalities
    Barbara Panicucci
    Massimo Pappalardo
    Mauro Passacantando
    [J]. Computational Optimization and Applications, 2009, 43 : 197 - 211