A globally convergent BFGS method with nonmonotone line search for non-convex minimization

被引:11
|
作者
Xiao, Yunhai [1 ,2 ]
Sun, Huijuan [2 ]
Wang, Zhiguo [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Henan Univ, Inst Appl Math, Coll Math & Informat Sci, Kaifeng 475004, Peoples R China
关键词
Non-convex minimization; Secant equation; BFGS method; Nonmonotone line search; Global convergence; QUASI-NEWTON METHODS;
D O I
10.1016/j.cam.2008.10.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a modified BFGS (Broyden-Fletcher-Goldfarb-Shanno) method with nommonotone line search for unconstrained optimization. Under some mild conditions, we show that the method is globally convergent without a convexity assumption on the objective function. We also report some preliminary numerical results to show the efficiency of the proposed method. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 50 条
  • [1] A note on "A globally convergent BFGS method with nonmonotone line search for non-convex minimization"
    Zhang, Li
    Chen, Xinlong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 764 - 766
  • [2] A Nonmonotone Modified BFGS Method for Non-convex Minimization
    Li, Tingfeng
    Liu, Zhiyuan
    Yan, Shenghui
    [J]. MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4023 - 4026
  • [3] A globally convergent BFGS method for nonconvex minimization without line searches
    Zhang, L
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (06): : 737 - 747
  • [4] Globally convergent BFGS method for nonsmooth convex optimization
    Rauf, AI
    Fukushima, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (03) : 539 - 558
  • [5] Global convergence of a modified limited memory BFGS method for non-convex minimization
    Yun-hai Xiao
    Ting-feng Li
    Zeng-xin Wei
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 555 - 566
  • [6] Global Convergence of a Modified Limited Memory BFGS Method for Non-convex Minimization
    Xiao, Yun-hai
    Li, Ting-feng
    Wei, Zeng-xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 555 - 566
  • [7] Global Convergence of a Modified Limited Memory BFGS Method for Non-convex Minimization
    Yun-hai XIAO
    Ting-feng
    Zeng-xin WEI
    [J]. Acta Mathematicae Applicatae Sinica, 2013, 29 (03) : 555 - 566
  • [8] A globally convergent approximate Newton method for non-convex sparse learning
    Ji, Fanfan
    Shuai, Hui
    Yuan, Xiao-Tong
    [J]. PATTERN RECOGNITION, 2022, 126
  • [9] Global convergence of a modified BFGS-type method for unconstrained non-convex minimization
    Guo Q.
    Liu J.-G.
    [J]. Journal of Applied Mathematics and Computing, 2007, 24 (1-2) : 325 - 331
  • [10] Globally Convergent BFGS Method for Nonsmooth Convex Optimization1
    A. I. Rauf
    M. Fukushima
    [J]. Journal of Optimization Theory and Applications, 2000, 104 : 539 - 558