A note on "A globally convergent BFGS method with nonmonotone line search for non-convex minimization"

被引:0
|
作者
Zhang, Li [1 ]
Chen, Xinlong [1 ]
机构
[1] Changsha Univ Sci & Technol, Dept Math, Changsha 410004, Hunan, Peoples R China
关键词
BFGS method; Nonmonotone line search; Global convergence;
D O I
10.1016/j.amc.2012.06.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we point out that Assumptions 3.1, 3.2 in [Y. Xiao, H. Sun, Z. Wang, A globally convergent BFGS method with nonmonotone line search for non-convex minimization, J. Comput. Appl. Math. 230 (2009) 95-106] are not enough to guarantee the global convergence result Theorem 3.1 in [1]. We present a new assumption and show that the proposed method in [1] still converges globally under these three assumptions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:764 / 766
页数:3
相关论文
共 50 条
  • [1] A globally convergent BFGS method with nonmonotone line search for non-convex minimization
    Xiao, Yunhai
    Sun, Huijuan
    Wang, Zhiguo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (01) : 95 - 106
  • [2] A Nonmonotone Modified BFGS Method for Non-convex Minimization
    Li, Tingfeng
    Liu, Zhiyuan
    Yan, Shenghui
    [J]. MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4023 - 4026
  • [3] A globally convergent BFGS method for nonconvex minimization without line searches
    Zhang, L
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (06): : 737 - 747
  • [4] Globally convergent BFGS method for nonsmooth convex optimization
    Rauf, AI
    Fukushima, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (03) : 539 - 558
  • [5] Global convergence of a modified limited memory BFGS method for non-convex minimization
    Yun-hai Xiao
    Ting-feng Li
    Zeng-xin Wei
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 555 - 566
  • [6] Global Convergence of a Modified Limited Memory BFGS Method for Non-convex Minimization
    Xiao, Yun-hai
    Li, Ting-feng
    Wei, Zeng-xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 555 - 566
  • [7] Global Convergence of a Modified Limited Memory BFGS Method for Non-convex Minimization
    Yun-hai XIAO
    Ting-feng
    Zeng-xin WEI
    [J]. Acta Mathematicae Applicatae Sinica, 2013, 29 (03) : 555 - 566
  • [8] A globally convergent approximate Newton method for non-convex sparse learning
    Ji, Fanfan
    Shuai, Hui
    Yuan, Xiao-Tong
    [J]. PATTERN RECOGNITION, 2022, 126
  • [9] Global convergence of a modified BFGS-type method for unconstrained non-convex minimization
    Guo Q.
    Liu J.-G.
    [J]. Journal of Applied Mathematics and Computing, 2007, 24 (1-2) : 325 - 331
  • [10] Globally Convergent BFGS Method for Nonsmooth Convex Optimization1
    A. I. Rauf
    M. Fukushima
    [J]. Journal of Optimization Theory and Applications, 2000, 104 : 539 - 558