A globally convergent proximal Newton-type method in nonsmooth convex optimization

被引:14
|
作者
Mordukhovich, Boris S. [1 ]
Yuan, Xiaoming [2 ]
Zeng, Shangzhi [3 ]
Zhang, Jin [4 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[3] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[4] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Dept Math, Shenzhen 518055, Peoples R China
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Nonsmooth convex optimization; Machine learning; Proximal Newton methods; Global and local convergence; Metric subregularity; METRIC SUBREGULARITY; GENERALIZED EQUATIONS; REGULARITY; ALGORITHM;
D O I
10.1007/s10107-022-01797-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The paper proposes and justifies a new algorithm of the proximal Newton type to solve a broad class of nonsmooth composite convex optimization problems without strong convexity assumptions. Based on advanced notions and techniques of variational analysis, we establish implementable results on the global convergence of the proposed algorithm as well as its local convergence with superlinear and quadratic rates. For certain structured problems, the obtained local convergence conditions do not require the local Lipschitz continuity of the corresponding Hessian mappings that is a crucial assumption used in the literature to ensure a superlinear convergence of other algorithms of the proximal Newton type. The conducted numerical experiments of solving the l(1) regularized logistic regression model illustrate the possibility of applying the proposed algorithm to deal with practically important problems.
引用
收藏
页码:899 / 936
页数:38
相关论文
共 50 条
  • [1] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Boris S. Mordukhovich
    Xiaoming Yuan
    Shangzhi Zeng
    Jin Zhang
    [J]. Mathematical Programming, 2023, 198 : 899 - 936
  • [2] Globally convergent Newton-type methods for multiobjective optimization
    Goncalves, M. L. N.
    Lima, F. S.
    Prudente, L. F.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (02) : 403 - 434
  • [3] Globally convergent Newton-type methods for multiobjective optimization
    M. L. N. Gonçalves
    F. S. Lima
    L. F. Prudente
    [J]. Computational Optimization and Applications, 2022, 83 : 403 - 434
  • [4] Globally convergent BFGS method for nonsmooth convex optimization
    Rauf, AI
    Fukushima, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (03) : 539 - 558
  • [5] New Proximal Newton-Type Methods for Convex Optimization
    Adler, Ilan
    Hu, Zhiyue T.
    Lin, Tianyi
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 4828 - 4835
  • [6] A Superlinearly-Convergent Proximal Newton-Type Method for the Optimization of Finite Sums
    Rodomanov, Anton
    Kropotov, Dmitry
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [7] Globally Convergent BFGS Method for Nonsmooth Convex Optimization1
    A. I. Rauf
    M. Fukushima
    [J]. Journal of Optimization Theory and Applications, 2000, 104 : 539 - 558
  • [8] A truly globally convergent Newton-type method for the monotone nonlinear complementarity problem
    Solodov, MV
    Svaiter, BF
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) : 605 - 625
  • [9] A truly globally convergent feasible Newton-type method for mixed complementarity problems
    Han, D
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (03) : 347 - 360
  • [10] A NEWTON-TYPE GLOBALLY CONVERGENT INTERIOR-POINT METHOD TO SOLVE MULTI-OBJECTIVE OPTIMIZATION PROBLEMS
    Jauny
    Ghosh, Debdas
    Upadhayay, Ashutosh
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (01) : 24 - 48