Globally convergent BFGS method for nonsmooth convex optimization

被引:15
|
作者
Rauf, AI [1 ]
Fukushima, M
机构
[1] Hamdard Univ, Islamabad, Pakistan
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto, Japan
关键词
nonsmooth convex optimization; Moreau-Yosida regularization; strong convexity; inexact function and gradient evaluations; BFGS method;
D O I
10.1023/A:1004633524446
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose an implementable BFGS method for solving a nonsmooth convex optimization problem by converting the original objective function into a once continuously differentiable function by way of the Moreau-Yosida regularization. The proposed method makes use of approximate function and gradient values of the Moreau-Yosida regularization instead of the corresponding exact values. We prove the global convergence of the proposed method under the assumption of strong convexity of the objective function.
引用
收藏
页码:539 / 558
页数:20
相关论文
共 50 条
  • [21] A Globally and Superlinearly Convergent Method for Monotone Complementarity Problems with Nonsmooth Functions
    杨余飞
    李董辉
    [J]. 数学进展, 1998, (06) : 555 - 557
  • [22] A MODIFIED SCALED MEMORYLESS BFGS PRECONDITIONED CONJUGATE GRADIENT ALGORITHM FOR NONSMOOTH CONVEX OPTIMIZATION
    Ou, Yigui
    Zhou, Xin
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2018, 14 (02) : 785 - 801
  • [23] A STRONGLY CONVERGENT METHOD FOR NONSMOOTH CONVEX MINIMIZATION IN HILBERT SPACES
    Bello Cruz, J. Y.
    Iusem, A. N.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (10) : 1009 - 1018
  • [24] Globally convergent coderivative-based generalized Newton methods in nonsmooth optimization
    Pham Duy Khanh
    Boris S. Mordukhovich
    Vo Thanh Phat
    Dat Ba Tran
    [J]. Mathematical Programming, 2024, 205 : 373 - 429
  • [25] Globally convergent coderivative-based generalized Newton methods in nonsmooth optimization
    Khanh, Pham Duy
    Mordukhovich, Boris S.
    Phat, Vo Thanh
    Tran, Dat Ba
    [J]. MATHEMATICAL PROGRAMMING, 2024, 205 (1-2) : 373 - 429
  • [26] GLOBALLY CONVERGENT NEWTON METHODS FOR NONSMOOTH EQUATIONS
    HAN, SP
    PANG, JS
    RANGARAJ, N
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1992, 17 (03) : 586 - 607
  • [27] Barrier method in nonsmooth convex optimization without convex representation
    Dutta, Joydeep
    [J]. OPTIMIZATION LETTERS, 2015, 9 (06) : 1177 - 1185
  • [28] TRUNCATED CODIFFERENTIAL METHOD FOR NONSMOOTH CONVEX OPTIMIZATION
    Bagirov, A. M.
    Ganjehlou, A. Nazari
    Ugon, J.
    Tor, A. H.
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (03): : 483 - 496
  • [29] A feasible directions method for nonsmooth convex optimization
    Herskovits, Jose
    Freire, Wilhelm P.
    Fo, Mario Tanaka
    Canelas, Alfredo
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 44 (03) : 363 - 377
  • [30] Barrier method in nonsmooth convex optimization without convex representation
    Joydeep Dutta
    [J]. Optimization Letters, 2015, 9 : 1177 - 1185