TRUNCATED CODIFFERENTIAL METHOD FOR NONSMOOTH CONVEX OPTIMIZATION

被引:0
|
作者
Bagirov, A. M. [1 ]
Ganjehlou, A. Nazari [1 ]
Ugon, J. [1 ]
Tor, A. H. [2 ,3 ]
机构
[1] Univ Ballarat, Ctr Informat & Appl Optimizat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
[2] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[3] Dept Math, Yuzuncu Yil, Van, Turkey
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2010年 / 6卷 / 03期
基金
澳大利亚研究理事会;
关键词
nonsmooth optimization; convex optimization; subdifferential; codifferential;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper a new algorithm to minimize convex functions is developed. This algorithm is based on the concept of codifferential. Since the computation of whole codifferential is not always possible we propose an algorithm for computation of descent directions using only a few elements from the codifferential. The convergence of the proposed minimization algorithm is proved and results of numerical experiments using a set of test problems with nonsmooth convex objective function are reported. We also compare the proposed algorithm with three different versions of bundle methods. Tins comparison shows that the proposed method is more robust than bundle methods.
引用
收藏
页码:483 / 496
页数:14
相关论文
共 50 条
  • [1] Aggregate codifferential method for nonsmooth DC optimization
    Tor, Ali Hakan
    Bagirov, Adil
    Karasozen, Bulent
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 851 - 867
  • [2] The method of codifferential descent for convex and global piecewise affine optimization
    Dolgopolik, M. V.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (06): : 1191 - 1222
  • [3] Codifferential method for minimizing nonsmooth DC functions
    Bagirov, A. M.
    Ugon, J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (01) : 3 - 22
  • [4] New method for nonsmooth convex optimization
    Wei, Z
    Qi, L
    Birge, JR
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (02) : 157 - 179
  • [5] Codifferential method for minimizing nonsmooth DC functions
    A. M. Bagirov
    J. Ugon
    [J]. Journal of Global Optimization, 2011, 50 : 3 - 22
  • [6] A feasible directions method for nonsmooth convex optimization
    Herskovits, Jose
    Freire, Wilhelm P.
    Fo, Mario Tanaka
    Canelas, Alfredo
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 44 (03) : 363 - 377
  • [7] Barrier method in nonsmooth convex optimization without convex representation
    Dutta, Joydeep
    [J]. OPTIMIZATION LETTERS, 2015, 9 (06) : 1177 - 1185
  • [8] Barrier method in nonsmooth convex optimization without convex representation
    Joydeep Dutta
    [J]. Optimization Letters, 2015, 9 : 1177 - 1185
  • [9] A feasible directions method for nonsmooth convex optimization
    José Herskovits
    Wilhelm P. Freire
    Mario Tanaka Fo
    Alfredo Canelas
    [J]. Structural and Multidisciplinary Optimization, 2011, 44 : 363 - 377
  • [10] A trust region method for nonsmooth convex optimization
    Sagara, Nobuko
    Fukushima, Masao
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (02) : 171 - 180