Globally convergent BFGS method for nonsmooth convex optimization

被引:15
|
作者
Rauf, AI [1 ]
Fukushima, M
机构
[1] Hamdard Univ, Islamabad, Pakistan
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto, Japan
关键词
nonsmooth convex optimization; Moreau-Yosida regularization; strong convexity; inexact function and gradient evaluations; BFGS method;
D O I
10.1023/A:1004633524446
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose an implementable BFGS method for solving a nonsmooth convex optimization problem by converting the original objective function into a once continuously differentiable function by way of the Moreau-Yosida regularization. The proposed method makes use of approximate function and gradient values of the Moreau-Yosida regularization instead of the corresponding exact values. We prove the global convergence of the proposed method under the assumption of strong convexity of the objective function.
引用
收藏
页码:539 / 558
页数:20
相关论文
共 50 条