Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data

被引:3
|
作者
Lu, Fei [1 ]
Weitzel, Nils [2 ,3 ]
Monahan, Adam H. [4 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Heidelberg Univ, Inst Umweltphys, Heidelberg, Germany
[3] Rheinische Friedrich Wilhelms Univ Bonn, Inst Geowissensch & Meteorol, Bonn, Germany
[4] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
PALEOCLIMATE RECONSTRUCTION; POLYNOMIAL CHAOS; ASSIMILATION; CLIMATOLOGY; TEMPERATURE; LIMITATIONS; FILTERS; SPACE;
D O I
10.5194/npg-26-227-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
While nonlinear stochastic partial differential equations arise naturally in spatiotemporal modeling, inference for such systems often faces two major challenges: sparse noisy data and ill-posedness of the inverse problem of parameter estimation. To overcome the challenges, we introduce a strongly regularized posterior by normalizing the likelihood and by imposing physical constraints through priors of the parameters and states. We investigate joint parameter-state estimation by the regularized posterior in a physically motivated nonlinear stochastic energy balance model (SEBM) for paleoclimate reconstruction. The high-dimensional posterior is sampled by a particle Gibbs sampler that combines a Markov chain Monte Carlo (MCMC) method with an optimal particle filter exploiting the structure of the SEBM. In tests using either Gaussian or uniform priors based on the physical range of parameters, the regularized posteriors overcome the ill-posedness and lead to samples within physical ranges, quantifying the uncertainty in estimation. Due to the ill-posedness and the regularization, the posterior of parameters presents a relatively large uncertainty, and consequently, the maximum of the posterior, which is the minimizer in a variational approach, can have a large variation. In contrast, the posterior of states generally concentrates near the truth, substantially filtering out observation noise and reducing uncertainty in the unconstrained SEBM.
引用
收藏
页码:227 / 250
页数:24
相关论文
共 50 条
  • [21] Accurate state and parameter estimation in nonlinear systems with sparse observations
    Rey, Daniel
    Eldridge, Michael
    Kostuk, Mark
    Abarbanel, Henry D. I.
    Schumann-Bischoff, Jan
    Parlitz, Ulrich
    PHYSICS LETTERS A, 2014, 378 (11-12) : 869 - 873
  • [22] Adaptive nonlinear observer for state and unknown parameter estimation in noisy systems
    Vijayaraghavan, Krishna
    Valibeygi, Amir
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (01) : 38 - 54
  • [23] Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries
    Roy, Kevin
    Lopez-Ramos, Luis Miguel
    Beferull-Lozano, Baltasar
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 436 - 440
  • [24] Joint Nonlinear Sparse Error Correction for Robust State Estimation
    Kibria, Sharmin
    Kim, Jinsub
    Raich, Raviv
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5859 - 5874
  • [25] Joint state and parameter estimation in particle filtering and stochastic optimization
    Yang X.
    Xing K.
    Shi K.
    Pan Q.
    J. Control Theory Appl., 2008, 2 (215-220): : 215 - 220
  • [26] Joint state and parameter estimation in particle filtering and stochastic optimization
    Xiaojun YANG 1
    2.Xi’an Institute of Electromechanical Information Technology
    3.School of Automation
    JournalofControlTheoryandApplications, 2008, (02) : 215 - 220
  • [27] Joint State-Parameter Estimation for Active Vehicle Suspensions: A Takagi-Sugeno Kalman Filtering Approach
    Pletschen, Nils
    Barthelmes, Stefan
    Lohmann, Boris
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1545 - 1550
  • [28] Estimation of the Hurst parameter from continuous noisy data
    Chigansky, Pavel
    Kleptsyna, Marina
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2343 - 2385
  • [29] Estimation of the Hurst parameter from discrete noisy data
    Gloter, Arnaud
    Hoffmann, Marc
    ANNALS OF STATISTICS, 2007, 35 (05): : 1947 - 1974
  • [30] Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation
    Lue, Haishen
    Yu, Zhongbo
    Zhu, Yonghua
    Drake, Sam
    Hao, Zhenchun
    Sudicky, Edward A.
    ADVANCES IN WATER RESOURCES, 2011, 34 (03) : 395 - 406