Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data

被引:3
|
作者
Lu, Fei [1 ]
Weitzel, Nils [2 ,3 ]
Monahan, Adam H. [4 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Heidelberg Univ, Inst Umweltphys, Heidelberg, Germany
[3] Rheinische Friedrich Wilhelms Univ Bonn, Inst Geowissensch & Meteorol, Bonn, Germany
[4] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
PALEOCLIMATE RECONSTRUCTION; POLYNOMIAL CHAOS; ASSIMILATION; CLIMATOLOGY; TEMPERATURE; LIMITATIONS; FILTERS; SPACE;
D O I
10.5194/npg-26-227-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
While nonlinear stochastic partial differential equations arise naturally in spatiotemporal modeling, inference for such systems often faces two major challenges: sparse noisy data and ill-posedness of the inverse problem of parameter estimation. To overcome the challenges, we introduce a strongly regularized posterior by normalizing the likelihood and by imposing physical constraints through priors of the parameters and states. We investigate joint parameter-state estimation by the regularized posterior in a physically motivated nonlinear stochastic energy balance model (SEBM) for paleoclimate reconstruction. The high-dimensional posterior is sampled by a particle Gibbs sampler that combines a Markov chain Monte Carlo (MCMC) method with an optimal particle filter exploiting the structure of the SEBM. In tests using either Gaussian or uniform priors based on the physical range of parameters, the regularized posteriors overcome the ill-posedness and lead to samples within physical ranges, quantifying the uncertainty in estimation. Due to the ill-posedness and the regularization, the posterior of parameters presents a relatively large uncertainty, and consequently, the maximum of the posterior, which is the minimizer in a variational approach, can have a large variation. In contrast, the posterior of states generally concentrates near the truth, substantially filtering out observation noise and reducing uncertainty in the unconstrained SEBM.
引用
收藏
页码:227 / 250
页数:24
相关论文
共 50 条
  • [41] An Algorithm for Converting Nonlinear Differential Equations to Integral Equations with an Application to Parameter Estimation from Noisy Data
    Boulier, Francois
    Korporal, Anja
    Lemaire, Francois
    Perruquetti, Wilfrid
    Poteaux, Adrien
    Ushirobira, Rosane
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2014, 2014, 8660 : 28 - 43
  • [42] Approximate EM algorithms for parameter and state estimation in nonlinear stochastic models
    Goodwin, Graham C.
    Aguero, Juan C.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 368 - 373
  • [43] Dual state-parameter simultaneous estimation using localised ensemble Kalman filter and application in environmental model
    Li, Yan
    Chen, Chong
    Zhou, Jian
    Zhang, Gaofeng
    Chen, Xiaolong
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2016, 8 (01) : 93 - 103
  • [44] Optimal nonlinear dynamic sparse model selection and Bayesian parameter estimation for nonlinear systems
    Adeyemo, Samuel
    Bhattacharyya, Debangsu
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 180
  • [45] An algorithm for ARMA model parameter estimation from noisy observations
    Fattah, S. A.
    Zhu, W. -P.
    Ahmad, M. O.
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 3202 - 3205
  • [46] Online Noise Identification for Joint State and Parameter Estimation of Nonlinear Systems
    Kontoroupi, Thaleia
    Smyth, Andrew W.
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2016, 2 (03):
  • [47] Nonlinear joint state and parameter estimation: Application to a wastewater treatment plant
    Bezzaoucha, S.
    Marx, B.
    Maquin, D.
    Ragot, J.
    CONTROL ENGINEERING PRACTICE, 2013, 21 (10) : 1377 - 1385
  • [48] An Energy Balance Model Parameter Estimation with an Extended Kalman Filter
    Manurung, Auralius
    Kristiana, Lisa
    Aryanta, Dwi
    IFAC PAPERSONLINE, 2021, 54 (20): : 735 - 740
  • [49] Joint estimation of state, parameter, and unknown input for nonlinear systems: A composite estimation scheme
    Wang, Licheng
    Luo, Qi
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (18) : 9519 - 9537
  • [50] Joint maximum a posteriori state path and parameter estimation in stochastic differential equations
    Archanjo Dutra, Dimas Abreu
    Soares Teixeira, Bruno Otavio
    Aguirre, Luis Antonio
    AUTOMATICA, 2017, 81 : 403 - 408