Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data

被引:3
|
作者
Lu, Fei [1 ]
Weitzel, Nils [2 ,3 ]
Monahan, Adam H. [4 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Heidelberg Univ, Inst Umweltphys, Heidelberg, Germany
[3] Rheinische Friedrich Wilhelms Univ Bonn, Inst Geowissensch & Meteorol, Bonn, Germany
[4] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
PALEOCLIMATE RECONSTRUCTION; POLYNOMIAL CHAOS; ASSIMILATION; CLIMATOLOGY; TEMPERATURE; LIMITATIONS; FILTERS; SPACE;
D O I
10.5194/npg-26-227-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
While nonlinear stochastic partial differential equations arise naturally in spatiotemporal modeling, inference for such systems often faces two major challenges: sparse noisy data and ill-posedness of the inverse problem of parameter estimation. To overcome the challenges, we introduce a strongly regularized posterior by normalizing the likelihood and by imposing physical constraints through priors of the parameters and states. We investigate joint parameter-state estimation by the regularized posterior in a physically motivated nonlinear stochastic energy balance model (SEBM) for paleoclimate reconstruction. The high-dimensional posterior is sampled by a particle Gibbs sampler that combines a Markov chain Monte Carlo (MCMC) method with an optimal particle filter exploiting the structure of the SEBM. In tests using either Gaussian or uniform priors based on the physical range of parameters, the regularized posteriors overcome the ill-posedness and lead to samples within physical ranges, quantifying the uncertainty in estimation. Due to the ill-posedness and the regularization, the posterior of parameters presents a relatively large uncertainty, and consequently, the maximum of the posterior, which is the minimizer in a variational approach, can have a large variation. In contrast, the posterior of states generally concentrates near the truth, substantially filtering out observation noise and reducing uncertainty in the unconstrained SEBM.
引用
收藏
页码:227 / 250
页数:24
相关论文
共 50 条
  • [31] Joint state and parameter estimation for a target-directed nonlinear dynamic system model
    Togneri, R
    Deng, L
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (12) : 3061 - 3070
  • [32] Joint state-parameter estimation for structures with seismic isolation and damping systems: Theoretical observability and experimental verification
    He, Xinhao
    Li, Dan
    Unjoh, Shigeki
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 203
  • [33] Simultaneous state-parameter estimation of rainfall-induced landslide displacement using data assimilation
    Wang, Jing
    Nie, Guigen
    Gao, Shengjun
    Xue, Changhu
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2019, 19 (07) : 1387 - 1398
  • [34] Joint Parameter and State Estimation of Noisy Discrete-Time Nonlinear Systems: A Supervisory Multi-Observer Approach
    Meijer, T. J.
    Dolk, V. S.
    Chong, M. S.
    Postoyan, R.
    de Jager, B.
    Nesic, D.
    Heemels, W. P. M. H.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5163 - 5168
  • [35] Optimal Estimation of Stochastic Energy Balance Model Parameters
    Cummins, Donald P.
    Stephenson, David B.
    Stott, Peter A.
    JOURNAL OF CLIMATE, 2020, 33 (18) : 7909 - 7926
  • [36] Dual state-parameter estimation of land surface model through assimilating microwave brightness temperature
    Peng, Bin
    Shi, Jiancheng
    Lei, Yonghui
    Zhao, Tianjie
    Li, Dongyang
    LAND SURFACE REMOTE SENSING II, 2014, 9260
  • [37] NONLINEAR STOCHASTIC PARAMETER MODEL FOR HUMAN HEIGHT DATA
    MURPHY, JR
    BIOMETRICS, 1978, 34 (01) : 163 - 164
  • [38] New Approaches to Parameter Estimation from Noisy Image Data
    Whitaker, Meredith Kathryn
    Clarkson, Eric
    Barrett, Harrison H.
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 3602 - 3604
  • [39] ISING FIELD PARAMETER ESTIMATION FROM INCOMPLETE AND NOISY DATA
    Giovannelli, J. -F.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1853 - 1856
  • [40] Real-time thermal dynamic analysis of a house using RC models and joint state-parameter estimation
    Li, Yong
    Castiglione, Juan
    Astroza, Rodrigo
    Chen, Yuxiang
    BUILDING AND ENVIRONMENT, 2021, 188