Real-time thermal dynamic analysis of a house using RC models and joint state-parameter estimation

被引:20
|
作者
Li, Yong [1 ]
Castiglione, Juan [2 ]
Astroza, Rodrigo [2 ]
Chen, Yuxiang [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada
[2] Univ Andes, Fac Ingn & Ciencias Aplicadas, Santiago 7620001, Chile
基金
加拿大自然科学与工程研究理事会;
关键词
Building thermal dynamics; RC models; State-parameter estimation; Unscented kalman filter; Real-time online prediction; KALMAN FILTER; PREDICTIVE CONTROL; BUILDING SYSTEMS; FAULT-DETECTION; BOX MODEL; PERFORMANCE; DIAGNOSTICS; PROGNOSTICS; NETWORK; ZONE;
D O I
10.1016/j.buildenv.2020.107184
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To enable optimal building energy management in response to the ever-changing building and boundary conditions, it is critical to have numerical models that can provide accurate online prediction based on economically measurable inputs and feedback. The present study explores the capabilities of using the unscented Kalman filter (UKF) in combination with resistance-capacitance (RC) models for online estimation of the thermal dynamics of single detached houses. A joint state-parameter UKF estimation approach is applied to estimate unknown state and model parameters by using fictitious process equations to augment the state vector to include model parameters. The performance of this approach is evaluated by comparing the estimated state values to the monitored data. In addition, the prediction capability of the updated model is also investigated. The estimation procedure, mathematical operations, and result analysis are presented in detail. The remarkable model performance achieved shows that the UKF can efficiently improve RC models' predictability and enable timely online model updating and response prediction.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    Moradkhani, H
    Sorooshian, S
    Gupta, HV
    Houser, PR
    ADVANCES IN WATER RESOURCES, 2005, 28 (02) : 135 - 147
  • [2] Real-time parameter estimation of dynamic temperature models for greenhouse environmental control
    Cunha, JB
    Couto, C
    Ruano, AEB
    ALGORITHMS AND ARCHITECTURES FOR REAL-TIME CONTROL 1997, 1997, : 131 - 136
  • [3] Real-time parameter estimation of dynamic temperature models for greenhouse environmental control
    Cunha, JB
    Couto, C
    Ruano, AE
    CONTROL ENGINEERING PRACTICE, 1997, 5 (10) : 1473 - 1481
  • [4] Real-time Dynamic State Estimation Using Synchrophasor Data
    Pulok, Md Kamrul Hasan
    Faruque, M. Omar
    2015 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2015,
  • [5] An improved state-parameter analysis of ecosystem models using data assimilation
    Chen, M.
    Liu, S.
    Tieszen, L. L.
    Hollinger, D. Y.
    ECOLOGICAL MODELLING, 2008, 219 (3-4) : 317 - 326
  • [6] Extended Kalman filtering based real-time dynamic state and parameter estimation using PMU data
    Fan, Lingling
    Wehbe, Yasser
    ELECTRIC POWER SYSTEMS RESEARCH, 2013, 103 : 168 - 177
  • [7] A Bayesian Approach to Real-Time Dynamic Parameter Estimation Using PMU Measurement
    Xu, Yijun
    Chen, Xiao
    Mili, Lamine
    Korkali, Mert
    Min, Liang
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [8] Real-time parameter estimation of dynamic power systems using multiple observers
    Scholtz, Ernst
    Larsson, Mats
    Korba, Petr
    2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 155 - +
  • [9] Improving streamflow predictions at ungauged locations with real-time updating: application of an EnKF-based state-parameter estimation strategy
    Xie, X.
    Meng, S.
    Liang, S.
    Yao, Y.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2014, 18 (10) : 3923 - 3936
  • [10] Real-Time Dynamic Parameter Estimation for an Exponential Dynamic Load Model
    Rouhani, Alireza
    Abur, Ali
    IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (03) : 1530 - 1536