Real-time thermal dynamic analysis of a house using RC models and joint state-parameter estimation

被引:20
|
作者
Li, Yong [1 ]
Castiglione, Juan [2 ]
Astroza, Rodrigo [2 ]
Chen, Yuxiang [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada
[2] Univ Andes, Fac Ingn & Ciencias Aplicadas, Santiago 7620001, Chile
基金
加拿大自然科学与工程研究理事会;
关键词
Building thermal dynamics; RC models; State-parameter estimation; Unscented kalman filter; Real-time online prediction; KALMAN FILTER; PREDICTIVE CONTROL; BUILDING SYSTEMS; FAULT-DETECTION; BOX MODEL; PERFORMANCE; DIAGNOSTICS; PROGNOSTICS; NETWORK; ZONE;
D O I
10.1016/j.buildenv.2020.107184
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To enable optimal building energy management in response to the ever-changing building and boundary conditions, it is critical to have numerical models that can provide accurate online prediction based on economically measurable inputs and feedback. The present study explores the capabilities of using the unscented Kalman filter (UKF) in combination with resistance-capacitance (RC) models for online estimation of the thermal dynamics of single detached houses. A joint state-parameter UKF estimation approach is applied to estimate unknown state and model parameters by using fictitious process equations to augment the state vector to include model parameters. The performance of this approach is evaluated by comparing the estimated state values to the monitored data. In addition, the prediction capability of the updated model is also investigated. The estimation procedure, mathematical operations, and result analysis are presented in detail. The remarkable model performance achieved shows that the UKF can efficiently improve RC models' predictability and enable timely online model updating and response prediction.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Real-time collecting and handing system of dynamic parameter of thermal battery
    Zhang Li
    Gao Xinbao
    Yan Jun
    Jiang Li
    Proceedings of the First International Symposium on Test Automation & Instrumentation, Vols 1 - 3, 2006, : 629 - 632
  • [22] Real-time Transformer Parameter Estimation Using Terminal Measurements
    Zhang, Ziang
    Kang, Ning
    Mousavi, Mirrasoul J.
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [23] Challenges of Real-Time Parameter Estimation of a DFIG using Synchrophasors
    Malik, N. Ur Rehman
    Almas, M. S.
    Vanfretti, L.
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (IEEE EEEIC 2015), 2015, : 1939 - 1944
  • [24] PARAMETER-ESTIMATION IN ADSORPTION CHROMATOGRAPHY BY REAL-TIME ANALYSIS
    WAKAO, N
    KAGUEI, S
    SMITH, JM
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1979, 12 (06) : 481 - 483
  • [25] Real-time Optimization with persistent parameter adaptation using online parameter estimation
    Matias, Jose O. A.
    Le Roux, Galo A. C.
    JOURNAL OF PROCESS CONTROL, 2018, 68 : 195 - 204
  • [26] Parameter estimation in continuous-time dynamic models using principal differential analysis
    Poyton, AA
    Varziri, MS
    McAuley, KB
    McLellan, PJ
    Ramsay, JO
    COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (04) : 698 - 708
  • [27] A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models
    Gharamti, Mohamad E.
    Ait-El-Fquih, Boujemaa
    Hoteit, Ibrahim
    DYNAMIC DATA-DRIVEN ENVIRONMENTAL SYSTEMS SCIENCE, DYDESS 2014, 2015, 8964 : 207 - 214
  • [28] On-line parameter estimation through dynamic inversion: A real-time study
    Panjapornpon, Chanin
    Soroush, Masoud
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (08) : 2503 - 2507
  • [29] Real-time modal parameter estimation using subspace methods: Theory
    Tasker, F
    Bosse, A
    Fisher, S
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1998, 12 (06) : 797 - 808
  • [30] Real-time modal parameter estimation using subspace methods: Applications
    Naval Research Lab, Washington, United States
    Mech Syst Signal Process, 6 (809-823):