A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models

被引:1
|
作者
Gharamti, Mohamad E. [1 ]
Ait-El-Fquih, Boujemaa [2 ]
Hoteit, Ibrahim [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, Earth Sci & Engn, Thuwal 23955, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci, Thuwal 23955, Saudi Arabia
关键词
DATA ASSIMILATION;
D O I
10.1007/978-3-319-25138-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following a state-parameters joint augmentation strategy. In this study, we introduce a new smoothing-based joint EnKF scheme, in which we introduce a one-step-ahead smoothing of the state before updating the parameters. Numerical experiments are performed with a two-dimensional synthetic subsurface contaminant transport model. The improved performance of the proposed joint EnKF scheme compared to the standard joint EnKF compensates for the modest increase in the computational cost.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [1] An iterative ensemble Kalman filter with one-step-ahead smoothing for state-parameters estimation of contaminant transport models
    Gharamti, M. E.
    Ait-El-Fquih, B.
    Hoteit, I.
    JOURNAL OF HYDROLOGY, 2015, 527 : 442 - 457
  • [2] Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    Moradkhani, H
    Sorooshian, S
    Gupta, HV
    Houser, PR
    ADVANCES IN WATER RESOURCES, 2005, 28 (02) : 135 - 147
  • [3] Calibrating land hydrological models and enhancing their forecasting skills using an ensemble Kalman filter with one-step-ahead smoothing
    Khaki, Mehdi
    Ait-El-Fquih, Boujemaa
    Hoteit, Ibrahim
    JOURNAL OF HYDROLOGY, 2020, 584
  • [4] Ensemble Kalman Filtering with One-Step-Ahead Smoothing
    Raboudi, Naila F.
    Ait-El-Fquih, Boujemaa
    Hoteit, Ibrahim
    MONTHLY WEATHER REVIEW, 2018, 146 (02) : 561 - 581
  • [5] Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring
    Li, Y. J.
    Kokkinaki, Amalia
    Darve, Eric F.
    Kitanidis, Peter K.
    WATER RESOURCES RESEARCH, 2017, 53 (08) : 7190 - 7207
  • [6] A partitioned update scheme for state-parameter estimation of distributed hydrologic models based on the ensemble Kalman filter
    Xie, Xianhong
    Zhang, Dongxiao
    WATER RESOURCES RESEARCH, 2013, 49 (11) : 7350 - 7365
  • [7] Dual Kalman Filter based State-Parameter Estimation in Linear Lung Models
    Saatci, E.
    Akan, A.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 272 - 275
  • [8] Combining Hybrid and One-Step-Ahead Smoothing for Efficient Short-Range Storm Surge Forecasting with an Ensemble Kalman Filter
    Raboudi, Naila F.
    Ait-El-Fquih, Boujemaa
    Dawson, Clint
    Hoteit, Ibrahim
    MONTHLY WEATHER REVIEW, 2019, 147 (09) : 3283 - 3300
  • [9] Enhancing ensemble data assimilation into one-way-coupled models with one-step-ahead smoothing
    Raboudi, Naila F.
    Ait-El-Fquih, Boujemaa
    Subramanian, Aneesh C.
    Hoteit, Ibrahim
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (734) : 249 - 272
  • [10] A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology
    Ait-El-Fquih, Boujemaa
    El Gharamti, Mohamad
    Hoteit, Ibrahim
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (08) : 3289 - 3307