A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models

被引:1
|
作者
Gharamti, Mohamad E. [1 ]
Ait-El-Fquih, Boujemaa [2 ]
Hoteit, Ibrahim [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, Earth Sci & Engn, Thuwal 23955, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci, Thuwal 23955, Saudi Arabia
关键词
DATA ASSIMILATION;
D O I
10.1007/978-3-319-25138-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following a state-parameters joint augmentation strategy. In this study, we introduce a new smoothing-based joint EnKF scheme, in which we introduce a one-step-ahead smoothing of the state before updating the parameters. Numerical experiments are performed with a two-dimensional synthetic subsurface contaminant transport model. The improved performance of the proposed joint EnKF scheme compared to the standard joint EnKF compensates for the modest increase in the computational cost.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [21] Joint state and parameter estimation of quadrotor based on extended Kalman filter and complementary filter
    Janusz, Wojciech
    Niezabitowski, Michal
    PROCEEDINGS OF THE 2016 17TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2016, : 274 - 279
  • [22] State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter
    Zhang, Hongjuan
    Franssen, Harrie-Jan Hendricks
    Han, Xujun
    Vrugt, Jasper A.
    Vereecken, Harry
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (09) : 4927 - 4958
  • [23] Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models
    Gharamti, M. E.
    Hoteit, I.
    JOURNAL OF HYDROLOGY, 2014, 509 : 588 - 600
  • [24] Joint state and parameter estimation with an iterative ensemble Kalman smoother
    Bocquet, M.
    Sakov, P.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (05) : 803 - 818
  • [25] Experiences in multiyear combined state-parameter estimation with an ecosystem model of the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter
    Simon, Ehouarn
    Samuelsen, Annette
    Bertino, Laurent
    Mouysset, Sandrine
    JOURNAL OF MARINE SYSTEMS, 2015, 152 : 1 - 17
  • [26] Dual State parameter Estimation of One Dimensional Sediment Transport Using Ensemble Kalman Filter
    Lai Ruixun
    Yu Xin
    Yang Ming
    Zhang Fangxiu
    Zhang Xiaojing
    PROCEEDINGS OF THE 5TH INTERNATIONAL YELLOW RIVER FORUM ON ENSURING WATER RIGHT OF THE RIVER'S DEMAND AND HEALTHY RIVER BASIN MAINTENANCE, VOL IV, 2015, : 297 - 304
  • [27] Enhanced flood forecasting through ensemble data assimilation and joint state-parameter estimation
    Ziliani, Matteo G.
    Ghostine, Rabih
    Ait-El-Fquih, Boujemaa
    McCabe, Matthew F.
    Hoteit, Ibrahim
    JOURNAL OF HYDROLOGY, 2019, 577
  • [28] A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation
    Stroud, Jonathan R.
    Katzfuss, Matthias
    Wikle, Christopher K.
    MONTHLY WEATHER REVIEW, 2018, 146 (01) : 373 - 386
  • [29] State estimation of conceptual hydrological models using unscented Kalman filter
    Jiang, P.
    Sun, Y.
    Bao, W.
    HYDROLOGY RESEARCH, 2019, 50 (02): : 479 - 497
  • [30] Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation
    Lue, Haishen
    Yu, Zhongbo
    Zhu, Yonghua
    Drake, Sam
    Hao, Zhenchun
    Sudicky, Edward A.
    ADVANCES IN WATER RESOURCES, 2011, 34 (03) : 395 - 406