A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models

被引:1
|
作者
Gharamti, Mohamad E. [1 ]
Ait-El-Fquih, Boujemaa [2 ]
Hoteit, Ibrahim [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, Earth Sci & Engn, Thuwal 23955, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci, Thuwal 23955, Saudi Arabia
关键词
DATA ASSIMILATION;
D O I
10.1007/978-3-319-25138-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following a state-parameters joint augmentation strategy. In this study, we introduce a new smoothing-based joint EnKF scheme, in which we introduce a one-step-ahead smoothing of the state before updating the parameters. Numerical experiments are performed with a two-dimensional synthetic subsurface contaminant transport model. The improved performance of the proposed joint EnKF scheme compared to the standard joint EnKF compensates for the modest increase in the computational cost.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [41] Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter
    ELSheikh, A. H.
    Pain, C. C.
    Fang, F.
    Gomes, J. L. M. A.
    Navon, I. M.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (04) : 877 - 897
  • [42] Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter
    A. H. ELSheikh
    C. C. Pain
    F. Fang
    J. L. M. A. Gomes
    I. M. Navon
    Stochastic Environmental Research and Risk Assessment, 2013, 27 : 877 - 897
  • [43] Joint Unscented Kalman Filter for State and Parameter Estimation in Managed Pressure Drilling
    Mahdianfar, Hessam
    Pavlov, Alexey
    Aamo, Ole Morten
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1645 - 1650
  • [44] Modified Ensemble Kalman filter for reservoir parameter and state estimation in the presence of model uncertainty
    Akter, Farhana
    Imtiaz, Syed
    Zendehboudi, Sohrab
    Hossain, Kamal
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 199
  • [45] Least Squares Estimation and Kalman Filter Based Dynamic State and Parameter Estimation
    Fan, Lingling
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [46] Comparison of the performance of nonlinear Kalman filter based algorithms for state-parameter identification of base isolated structures
    Paul, Prodip Kumar
    Dutta, Anjan
    Deb, Sajal K.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (10):
  • [47] PARAMETER ESTIMATION FOR GARCH(1, 1) MODELS BASED ON KALMAN FILTER
    Allal, Jelloul
    Benmoumen, Mohammed
    ADVANCES AND APPLICATIONS IN STATISTICS, 2011, 25 (02) : 115 - 130
  • [48] Vehicle state and parameter estimation based on improved extend Kalman filter
    Liu, Yingjie
    Cui, Dawei
    Peng, Wen
    JOURNAL OF MEASUREMENTS IN ENGINEERING, 2023, 11 (04) : 496 - 508
  • [50] Efficient State/Parameter Estimation in Nonlinear Unsteady PDEs by a Reduced Basis Ensemble Kalman Filter
    Pagani, Stefano
    Manzoni, Andrea
    Quarteroni, Alfio
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 890 - 921