Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter

被引:35
|
作者
ELSheikh, A. H. [1 ]
Pain, C. C. [1 ]
Fang, F. [1 ]
Gomes, J. L. M. A. [1 ]
Navon, I. M. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2BP, England
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
ensemble Kalman filter; inverse problems; regularization; Gaussian process regression; Karhunen-Loeve expansion; MONTE-CARLO METHODS; DATA ASSIMILATION; STOCHASTIC-APPROXIMATION; MINIMIZATION; EFFICIENT;
D O I
10.1007/s00477-012-0613-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new parameter estimation algorithm based on ensemble Kalman filter (EnKF) is developed. The developed algorithm combined with the proposed problem parametrization offers an efficient parameter estimation method that converges using very small ensembles. The inverse problem is formulated as a sequential data integration problem. Gaussian process regression is used to integrate the prior knowledge (static data). The search space is further parameterized using Karhunen-LoSve expansion to build a set of basis functions that spans the search space. Optimal weights of the reduced basis functions are estimated by an iterative regularized EnKF algorithm. The filter is converted to an optimization algorithm by using a pseudo time-stepping technique such that the model output matches the time dependent data. The EnKF Kalman gain matrix is regularized using truncated SVD to filter out noisy correlations. Numerical results show that the proposed algorithm is a promising approach for parameter estimation of subsurface flow models.
引用
收藏
页码:877 / 897
页数:21
相关论文
共 50 条
  • [1] Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter
    A. H. ELSheikh
    C. C. Pain
    F. Fang
    J. L. M. A. Gomes
    I. M. Navon
    [J]. Stochastic Environmental Research and Risk Assessment, 2013, 27 : 877 - 897
  • [2] An iterative stochastic ensemble method for parameter estimation of subsurface flow models
    Elsheikh, Ahmed H.
    Wheeler, Mary F.
    Hoteit, Ibrahim
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 696 - 714
  • [3] A gaussian process-based iterative Ensemble Kalman Filter for parameter estimation of unsaturated flow
    Liu, Kun
    Huang, Guanhua
    Jiang, Zheng
    Xu, Xu
    Xiong, Yunwu
    Huang, Quanzhong
    Simunek, Jiri
    [J]. JOURNAL OF HYDROLOGY, 2020, 589
  • [4] State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
    Wang, Dingbao
    Chen, Yuguo
    Cai, Ximing
    [J]. WATER RESOURCES RESEARCH, 2009, 45
  • [5] Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    Moradkhani, H
    Sorooshian, S
    Gupta, HV
    Houser, PR
    [J]. ADVANCES IN WATER RESOURCES, 2005, 28 (02) : 135 - 147
  • [6] Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter
    Annan, JD
    Lunt, DJ
    Hargreaves, JC
    Valdes, PJ
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (03) : 363 - 371
  • [7] Groundwater parameter estimation using the ensemble Kalman filter with localization
    Nan, Tongchao
    Wu, Jichun
    [J]. HYDROGEOLOGY JOURNAL, 2011, 19 (03) : 547 - 561
  • [8] State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter
    Zhang, Hongjuan
    Franssen, Harrie-Jan Hendricks
    Han, Xujun
    Vrugt, Jasper A.
    Vereecken, Harry
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (09) : 4927 - 4958
  • [9] Using the Kalman filter for parameter estimation in biogeochemical models
    Trudinger, C. M.
    Raupach, M. R.
    Rayner, P. J.
    Enting, I. G.
    [J]. ENVIRONMETRICS, 2008, 19 (08) : 849 - 870
  • [10] A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology
    Ait-El-Fquih, Boujemaa
    El Gharamti, Mohamad
    Hoteit, Ibrahim
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (08) : 3289 - 3307