Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter

被引:35
|
作者
ELSheikh, A. H. [1 ]
Pain, C. C. [1 ]
Fang, F. [1 ]
Gomes, J. L. M. A. [1 ]
Navon, I. M. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2BP, England
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
ensemble Kalman filter; inverse problems; regularization; Gaussian process regression; Karhunen-Loeve expansion; MONTE-CARLO METHODS; DATA ASSIMILATION; STOCHASTIC-APPROXIMATION; MINIMIZATION; EFFICIENT;
D O I
10.1007/s00477-012-0613-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new parameter estimation algorithm based on ensemble Kalman filter (EnKF) is developed. The developed algorithm combined with the proposed problem parametrization offers an efficient parameter estimation method that converges using very small ensembles. The inverse problem is formulated as a sequential data integration problem. Gaussian process regression is used to integrate the prior knowledge (static data). The search space is further parameterized using Karhunen-LoSve expansion to build a set of basis functions that spans the search space. Optimal weights of the reduced basis functions are estimated by an iterative regularized EnKF algorithm. The filter is converted to an optimization algorithm by using a pseudo time-stepping technique such that the model output matches the time dependent data. The EnKF Kalman gain matrix is regularized using truncated SVD to filter out noisy correlations. Numerical results show that the proposed algorithm is a promising approach for parameter estimation of subsurface flow models.
引用
下载
收藏
页码:877 / 897
页数:21
相关论文
共 50 条
  • [21] An ensemble Kalman filter approach to parameter estimation for patient-specific cardiovascular flow modeling
    Canuto, Daniel
    Pantoja, Joe L.
    Han, Joyce
    Dutson, Erik P.
    Eldredge, Jeff D.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2020, 34 (04) : 521 - 544
  • [22] An ensemble Kalman filter approach to parameter estimation for patient-specific cardiovascular flow modeling
    Daniel Canuto
    Joe L. Pantoja
    Joyce Han
    Erik P. Dutson
    Jeff D. Eldredge
    Theoretical and Computational Fluid Dynamics, 2020, 34 : 521 - 544
  • [23] Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter
    Annan, JD
    Hargreaves, JC
    Edwards, NR
    Marsh, R
    OCEAN MODELLING, 2005, 8 (1-2) : 135 - 154
  • [24] An iterative ensemble Kalman filter for multiphase fluid flow data assimilation
    Gu, Yacling
    Oliver, Dean S.
    SPE JOURNAL, 2007, 12 (04): : 438 - 446
  • [25] Spatial variability of geomechanical parameter, estimation via ensemble kalman filter
    Zhao, Hong-Liang
    Feng, Xia-Ting
    Zhang, Dong-Xiao
    Zhou, Hui
    Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (10): : 2219 - 2223
  • [26] Spatial variability of geomechanical parameter estimation via ensemble kalman filter
    Zhao Hong-liang
    Feng Xia-ting
    Zhang Dong-xiao
    Zhou Hui
    ROCK AND SOIL MECHANICS, 2007, 28 (10) : 2219 - +
  • [27] A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation
    Stroud, Jonathan R.
    Katzfuss, Matthias
    Wikle, Christopher K.
    MONTHLY WEATHER REVIEW, 2018, 146 (01) : 373 - 386
  • [28] Groundwater parameter estimation via ensemble kalman filter with covariance localization
    Nan, T. C.
    Wu, J. C.
    CALIBRATION AND RELIABILITY IN GROUNDWATER MODELING: MANAGING GROUNDWATER AND THE ENVIRONMENT, 2009, : 51 - 54
  • [29] Parameter Estimation of Electric Water Heater Models Using Extended Kalman Filter
    Zuniga, Maria
    Agbossou, Kodjo
    Cardenas, Alben
    Boulon, Loic
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 386 - 391
  • [30] Constrained state estimation using the ensemble Kalman filter
    Prakash, J.
    Patwardhan, Sachin C.
    Shah, Sirish L.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 3542 - +