Constrained state estimation using the ensemble Kalman filter

被引:12
|
作者
Prakash, J. [1 ]
Patwardhan, Sachin C. [3 ]
Shah, Sirish L. [2 ]
机构
[1] Anna Univ, Dept Instrumentat Engn, MIT Campus, Chennai 600025, Tamil Nadu, India
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2M7, Canada
[3] Indian Inst Technol, Dept Chem Engn Q, Bombay 110016, Maharashtra, India
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/ACC.2008.4587042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recursive estimation of constrained nonlinear dynamical systems has attracted the attention of many researchers in recent years. In this work, we propose a constrained recursive formulation of the ensemble Kalman filter (CEnKF) that retains the advantages of unconstrained Ensemble Kalman Filter while systematically dealing with bounds on the estimated states. The efficacy of the proposed constrained state estimation algorithm using the EnKF is illustrated by application on a simulated gas-phase reactor problem.
引用
收藏
页码:3542 / +
页数:2
相关论文
共 50 条
  • [1] State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
    Wang, Dingbao
    Chen, Yuguo
    Cai, Ximing
    WATER RESOURCES RESEARCH, 2009, 45
  • [2] Constrained Dual Ensemble Kalman Filter for State and Parameter Estimation
    Bavdekar, Vinay A.
    Prakash, J.
    Shah, Sirish L.
    Gopaluni, R. Bhushan
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3093 - 3098
  • [3] Constrained State Estimation Using the Unscented Kalman Filter
    Kandepu, Rambabu
    Imsland, Lars
    Foss, Bjarne A.
    2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 203 - +
  • [4] Constrained Nonlinear State Estimation Using Ensemble Kalman Filters
    Prakash, J.
    Patwardhan, Sachin C.
    Shah, Sirish L.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (05) : 2242 - 2253
  • [5] Geospatial state space estimation using an ensemble Kalman Filter
    Sallis, Philip
    Hernandez, Sergio
    International Journal of Simulation: Systems, Science and Technology, 2010, 11 (06): : 56 - 60
  • [6] State estimation of tidal hydrodynamics using ensemble Kalman filter
    Tamura, Hitoshi
    Bacopoulos, Peter
    Wang, Dingbao
    Hagen, Scott C.
    Kubatko, Ethan J.
    ADVANCES IN WATER RESOURCES, 2014, 63 : 45 - 56
  • [7] An Inequality Constrained Ensemble Kalman Filter for Parameter Estimation Application
    Goh, Shu Ting
    Soon, Jing Jun
    Low, Kay-Soon
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [8] Nonlinear State Estimation in a Chemical Reactor Using the Ensemble Kalman Filter
    Miranda, Livington
    Plaza, Douglas
    Cajo, Ricardo
    Herrera, Efren
    Cevallos, Holguer
    2023 IEEE 6TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL, CCAC, 2023, : 230 - 235
  • [9] Recursive constrained state estimation using modified extended Kalman filter
    Prakash, J.
    Huang, Biao
    Shah, Sirish L.
    COMPUTERS & CHEMICAL ENGINEERING, 2014, 65 : 9 - 17
  • [10] Data Assimilation Using the Constrained Ensemble Kalman Filter
    Phale, Hemant A.
    Oliver, Dean S.
    SPE JOURNAL, 2011, 16 (02): : 331 - 342