Constrained state estimation using the ensemble Kalman filter

被引:12
|
作者
Prakash, J. [1 ]
Patwardhan, Sachin C. [3 ]
Shah, Sirish L. [2 ]
机构
[1] Anna Univ, Dept Instrumentat Engn, MIT Campus, Chennai 600025, Tamil Nadu, India
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2M7, Canada
[3] Indian Inst Technol, Dept Chem Engn Q, Bombay 110016, Maharashtra, India
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/ACC.2008.4587042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recursive estimation of constrained nonlinear dynamical systems has attracted the attention of many researchers in recent years. In this work, we propose a constrained recursive formulation of the ensemble Kalman filter (CEnKF) that retains the advantages of unconstrained Ensemble Kalman Filter while systematically dealing with bounds on the estimated states. The efficacy of the proposed constrained state estimation algorithm using the EnKF is illustrated by application on a simulated gas-phase reactor problem.
引用
收藏
页码:3542 / +
页数:2
相关论文
共 50 条
  • [31] Truncated Randomized Unscented Kalman Filter for Interval Constrained State Estimation
    Straka, Ondrej
    Dunik, Jindrich
    Simandl, Miroslav
    Havlik, Jindrich
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 2081 - 2088
  • [32] Dual State parameter Estimation of One Dimensional Sediment Transport Using Ensemble Kalman Filter
    Lai Ruixun
    Yu Xin
    Yang Ming
    Zhang Fangxiu
    Zhang Xiaojing
    PROCEEDINGS OF THE 5TH INTERNATIONAL YELLOW RIVER FORUM ON ENSURING WATER RIGHT OF THE RIVER'S DEMAND AND HEALTHY RIVER BASIN MAINTENANCE, VOL IV, 2015, : 297 - 304
  • [33] Constrained Dynamic Parameter Estimation using the Extended Kalman Filter
    Joukov, Vladimir
    Bonnet, Vincent
    Venture, Gentiane
    Kulic, Dana
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3654 - 3659
  • [34] Rate-constrained motion estimation using Kalman filter
    Chung, Shu-Chiang
    Kuo, Chung-Ming
    Shih, Po-Yi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2006, 17 (04) : 929 - 946
  • [35] On the comparison between Ensemble Kalman Filter and Kalman Filter for the Dynamic Harmonic State Estimation in a Hybrid Micro grid
    Carpinelli, G.
    Proto, D.
    Caramia, P.
    Alfieri, L.
    2016 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), 2016, : 294 - 301
  • [36] Neural Drive Estimation Using the Hypothesis of Muscle Synergies and the State-Constrained Kalman Filter
    Rasool, Ghulam
    Iqbal, Kamran
    Bouaynaya, Nidhal
    White, Gannon
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 802 - 805
  • [37] The Ensemble Kalman Filter for Rare Event Estimation
    Wagner, Fabian
    Papaioannou, I
    Ullmann, E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 317 - 349
  • [38] State of charge estimation using extended kalman filter
    Mazzi, Yahia
    Ben Sassi, Hicham
    Errahimi, Fatima
    Es-Sbai, Najia
    2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS), 2019,
  • [39] Nonlinear state estimation using fuzzy Kalman filter
    Senthil, R.
    Janarthanan, K.
    Prakash, J.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (25) : 8678 - 8688
  • [40] Spline approximation using Kalman filter state estimation
    Harashima, M
    Ferrari, LA
    Sankar, PV
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1997, 44 (05): : 421 - 424