Parameter Estimation of Electric Water Heater Models Using Extended Kalman Filter

被引:0
|
作者
Zuniga, Maria [1 ]
Agbossou, Kodjo [1 ]
Cardenas, Alben [1 ]
Boulon, Loic [1 ]
机构
[1] Univ Quebec Trois Rivieres, Hydrogen Res Inst IRH, Trois Rivieres, PQ G9A 5H7, Canada
关键词
Water heater system modeling; layer stratification; thermal zones; energy storage; extended Kalman filtering; parameter estimation; TANK;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electric water heaters have been regarded as a load to be exploited in residential energy management applications due to their potential energy storage capacity. Nevertheless, the implementation of control strategies for water heater systems requires high-performance models which must be capable of reproducing a water heater's internal operation dynamics, especially their inner water temperature variations. Therefore, appropriate water heater model selection and design is a challenge. This paper presents physical parameter estimation methods for two typical water heater models based on experimental data. The first method is based on the evaluation of the on-off times of the heating elements when there is no water consumption; the second method uses an extended Kalman filter to estimate the model's states and physical parameters. Additionally, by leveraging these estimated parameters, a comparative study of the temperature estimation and electric power consumption in both water heater models has been produced and is included. Experimental results show that a precise estimation of the physical parameters in the model allows the water thermal process to accurately identify and predict future power and energy consumption values.
引用
收藏
页码:386 / 391
页数:6
相关论文
共 50 条
  • [1] Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter
    Capinski, Michal
    Polanski, Andrzej
    [J]. MAN-MACHINE INTERACTIONS 4, ICMMI 2015, 2016, 391 : 195 - 204
  • [2] Using the Kalman filter for parameter estimation in biogeochemical models
    Trudinger, C. M.
    Raupach, M. R.
    Rayner, P. J.
    Enting, I. G.
    [J]. ENVIRONMETRICS, 2008, 19 (08) : 849 - 870
  • [3] State and parameter estimation using extended Kitanidis Kalman filter
    Varshney, Devyani
    Bhushan, Mani
    Patwardhan, Sachin C.
    [J]. JOURNAL OF PROCESS CONTROL, 2019, 76 : 98 - 111
  • [4] Constrained Dynamic Parameter Estimation using the Extended Kalman Filter
    Joukov, Vladimir
    Bonnet, Vincent
    Venture, Gentiane
    Kulic, Dana
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3654 - 3659
  • [5] On the Nonlinear Estimation of GARCH Models Using an Extended Kalman Filter
    Ossandon, Sebastian
    Bahamonde, Natalia
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 148 - 151
  • [6] Parameter estimation of an SMA actuator model using an extended Kalman filter
    Soltani, M.
    Bozorg, M.
    Zakerzadeh, M. R.
    [J]. MECHATRONICS, 2018, 50 : 148 - 159
  • [7] Walking parameter estimation of human leg using extended Kalman filter
    Navaneethan, S.
    Swetha, U.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 1541 - 1552
  • [8] Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter
    Zhang, Lei
    Wang, Zhenpo
    Sun, Fengchun
    Dorrell, David G.
    [J]. ENERGIES, 2014, 7 (05) : 3204 - 3217
  • [9] Elastic Modulus Estimation Using a Scaled State Parameter in the Extended Kalman Filter
    Koch, M. C.
    Murakami, A.
    Fujisawa, K.
    [J]. GEOTECHNICS FOR NATURAL DISASTER MITIGATION AND MANAGEMENT, 2020, : 43 - 51
  • [10] ADAPTIVE SYNCHRONIZATION AND CHANNEL PARAMETER-ESTIMATION USING AN EXTENDED KALMAN FILTER
    AGHAMOHAMMADI, A
    MEYR, H
    ASCHEID, G
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (11) : 1212 - 1219