Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter

被引:0
|
作者
Capinski, Michal [1 ]
Polanski, Andrzej [1 ]
机构
[1] Silesian Tech Univ, Inst Informat, Gliwice, Poland
来源
关键词
Parameter estimation; Systems biology; Extended kalman filter; Dynamic; Optimization; Spline approximation; STATE-SPACE MODELS; BIOCHEMICAL PATHWAYS; OPTIMIZATION;
D O I
10.1007/978-3-319-23437-3_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Models in systems biology, which reflect complex dynamic biological phenomena aremost often described as ordinary differential equations (ODE). Characteristic properties of these differential equations is nonlinearity and large size (number of state variables). These models also contain large numbers of unknown parameters. So the main challenge in developing models in systems biology is estimation of numerous unknown parameters in nonlinear differential equations. There are already numerous approaches to parameter estimation in systems biology models. However, main difficulties speed of convergence and multiple minima (multiple solutions) are still obstacles in achieving solutions of sufficient efficiency. In this chapter we propose a new approach based on combination of extended Kalman filtering dynamical optimization with spline approximation of solutions to ODE, for parameter estimation in systems biology models. We present the main idea and we show comparisons to some published results.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [1] Parameter Estimation of Electric Water Heater Models Using Extended Kalman Filter
    Zuniga, Maria
    Agbossou, Kodjo
    Cardenas, Alben
    Boulon, Loic
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 386 - 391
  • [2] Using the Kalman filter for parameter estimation in biogeochemical models
    Trudinger, C. M.
    Raupach, M. R.
    Rayner, P. J.
    Enting, I. G.
    ENVIRONMETRICS, 2008, 19 (08) : 849 - 870
  • [3] State and parameter estimation using extended Kitanidis Kalman filter
    Varshney, Devyani
    Bhushan, Mani
    Patwardhan, Sachin C.
    JOURNAL OF PROCESS CONTROL, 2019, 76 (98-111) : 98 - 111
  • [4] Constrained Dynamic Parameter Estimation using the Extended Kalman Filter
    Joukov, Vladimir
    Bonnet, Vincent
    Venture, Gentiane
    Kulic, Dana
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3654 - 3659
  • [5] On the Nonlinear Estimation of GARCH Models Using an Extended Kalman Filter
    Ossandon, Sebastian
    Bahamonde, Natalia
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 148 - 151
  • [6] Parameter estimation of an SMA actuator model using an extended Kalman filter
    Soltani, M.
    Bozorg, M.
    Zakerzadeh, M. R.
    MECHATRONICS, 2018, 50 : 148 - 159
  • [7] Walking parameter estimation of human leg using extended Kalman filter
    Navaneethan, S.
    Swetha, U.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 1541 - 1552
  • [8] Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter
    Zhang, Lei
    Wang, Zhenpo
    Sun, Fengchun
    Dorrell, David G.
    ENERGIES, 2014, 7 (05) : 3204 - 3217
  • [9] CFO Estimation in GFDM Systems Using Extended Kalman Filter
    Lahani-Nezhad, Tayyebeh
    Taban, Mohammad Reza
    Tabataba, Foroogh S.
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 1815 - 1819
  • [10] Elastic Modulus Estimation Using a Scaled State Parameter in the Extended Kalman Filter
    Koch, M. C.
    Murakami, A.
    Fujisawa, K.
    GEOTECHNICS FOR NATURAL DISASTER MITIGATION AND MANAGEMENT, 2020, : 43 - 51