Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter

被引:0
|
作者
Capinski, Michal [1 ]
Polanski, Andrzej [1 ]
机构
[1] Silesian Tech Univ, Inst Informat, Gliwice, Poland
来源
关键词
Parameter estimation; Systems biology; Extended kalman filter; Dynamic; Optimization; Spline approximation; STATE-SPACE MODELS; BIOCHEMICAL PATHWAYS; OPTIMIZATION;
D O I
10.1007/978-3-319-23437-3_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Models in systems biology, which reflect complex dynamic biological phenomena aremost often described as ordinary differential equations (ODE). Characteristic properties of these differential equations is nonlinearity and large size (number of state variables). These models also contain large numbers of unknown parameters. So the main challenge in developing models in systems biology is estimation of numerous unknown parameters in nonlinear differential equations. There are already numerous approaches to parameter estimation in systems biology models. However, main difficulties speed of convergence and multiple minima (multiple solutions) are still obstacles in achieving solutions of sufficient efficiency. In this chapter we propose a new approach based on combination of extended Kalman filtering dynamical optimization with spline approximation of solutions to ODE, for parameter estimation in systems biology models. We present the main idea and we show comparisons to some published results.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [31] State of charge estimation using extended kalman filter
    Mazzi, Yahia
    Ben Sassi, Hicham
    Errahimi, Fatima
    Es-Sbai, Najia
    2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS), 2019,
  • [32] Attitude Estimation for UAV Using Extended Kalman Filter
    Jing, Xiaofei
    Cui, Jiarui
    He, Hongtai
    Zhang, Bo
    Ding, Dawei
    Yang, Yue
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 3307 - 3312
  • [33] Sideslip angle estimation using extended Kalman filter
    Chen, B. -C.
    Hsieh, F-C.
    VEHICLE SYSTEM DYNAMICS, 2008, 46 : 353 - 364
  • [34] Compensation and estimation of friction by using extended kalman filter
    Gomonwattanapanich, Opart
    Pattanapukdee, Adual
    Mongkolwongrojn, Monakol
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 3167 - +
  • [35] Speed Estimation using Extended Kalman Filter for PMSM
    Shedbalkar, Kaustubh
    Dhamangaonkar, A. P.
    Patil, A. B.
    2012 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRICAL ENGINEERING AND ENERGY MANAGEMENT (ICETEEEM - 2012), 2012, : 433 - 435
  • [36] ESTIMATION OF ARRIVAL WAVES USING AN EXTENDED KALMAN FILTER
    WANG, J
    TAKANO, T
    HAGINO, K
    IEICE TRANSACTIONS ON COMMUNICATIONS, 1995, E78B (11) : 1443 - 1449
  • [37] Modal parameter estimation using interacting Kalman filter
    Zghal, Meriem
    Mevel, Laurent
    Del Moral, Pierre
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 47 (1-2) : 139 - 150
  • [38] Parameter Estimation of Hodgkin-Huxley Neuronal Model using Dual Extended Kalman Filter
    Lankarany, Milad
    Zhu, W. -P.
    Swamy, M. N. S.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 2493 - 2496
  • [39] Parameter Estimation of the Induction Motor Using Extended Kalman Filter for Wide Range Speed Control
    Dadkhah, R.
    Givi, H.
    Mehdipour, A.
    2015 6TH POWER ELECTRONICS, DRIVES SYSTEMS & TECHNOLOGIES CONFERENCE (PEDSTC), 2015, : 137 - 142
  • [40] Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter
    Bavdekar, Vinay A.
    Deshpande, Anjali P.
    Patwardhan, Sachin C.
    JOURNAL OF PROCESS CONTROL, 2011, 21 (04) : 585 - 601