Parameter Estimation of Hodgkin-Huxley Neuronal Model using Dual Extended Kalman Filter

被引:0
|
作者
Lankarany, Milad [1 ]
Zhu, W. -P. [1 ]
Swamy, M. N. S. [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
关键词
DYNAMIC CLAMP;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fitting biophysical models to real noisy data jointly with extracting fundamental biophysical parameters has recently stimulated tremendous studies in computational neuroscience. Hodgkin-Huxley (HH) neuronal model has been considered as the most detailed biophysical model for representing the dynamical behavior of the spiking neurons. In this paper, we derive, for the first time, the dual extended Kalman filtering (DEKF) approach for the HH neuronal model to track the dynamics and estimate the parameters of a single neuron from noisy recorded membrane voltage. As unscented Kalman filter (UKF) has been already applied to the HH model, a quantitative comparison between these methods is accomplished in our simulation for different signal to observation noise ratios. Our simulations demonstrate the high accuracy of DEKF in the prediction and estimation of hidden states and unknown parameters of the HH neuronal model. Faster implementation of DEKF (than UKF) makes it particularly useful in dynamic clamp technique.
引用
收藏
页码:2493 / 2496
页数:4
相关论文
共 50 条
  • [1] Joint estimation of states and parameters of Hodgkin-Huxley neuronal model using Kalman filtering
    Lankarany, M.
    Zhu, W. -P.
    Swamy, M. N. S.
    [J]. NEUROCOMPUTING, 2014, 136 : 289 - 299
  • [2] State Filtering and Parameter Estimation for Hodgkin-Huxley Model
    Liao, Fang
    Lou, Xuyang
    Cui, Baotong
    Wu, Wei
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4658 - 4663
  • [3] Parameter estimation of the Hodgkin-Huxley gating model: An inversion procedure
    Wang, GJ
    Beaumont, J
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (04) : 1249 - 1267
  • [4] Blind Deconvolution of Hodgkin-Huxley Neuronal Model
    Lankarany, M.
    Zhu, W-P.
    Swamy, M. N. S.
    Toyoizumi, Taro
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 3941 - 3944
  • [5] Parameter Identification Problem in the Hodgkin-Huxley Model
    Mandujano Valle, Jemy A.
    Madureira, Alexandre L.
    [J]. NEURAL COMPUTATION, 2022, 34 (04) : 939 - 970
  • [6] FPGA Realization of Hodgkin-Huxley Neuronal Model
    Shama, Farzin
    Haghiri, Saeed
    Imani, Mohammad Amin
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (05) : 1059 - 1068
  • [7] An improved parameter estimation method for Hodgkin-Huxley models
    Willms, AR
    Baro, DJ
    Harris-Warrick, RM
    Guckenheimer, J
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1999, 6 (02) : 145 - 168
  • [8] The extended Granger causality analysis for Hodgkin-Huxley neuronal models
    Cheng, Hong
    Cai, David
    Zhou, Douglas
    [J]. CHAOS, 2020, 30 (10)
  • [9] An Improved Parameter Estimation Method for Hodgkin-Huxley Models
    Allan R. Willms
    Deborah J. Baro
    Ronald M. Harris-Warrick
    John Guckenheimer
    [J]. Journal of Computational Neuroscience, 1999, 6 : 145 - 168
  • [10] Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter
    Che, Yanqiu
    Liu, Bei
    Li, Huiyan
    Li, Meili
    Wang, Jiang
    Wei, Xile
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 101 : 92 - 99