A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models

被引:1
|
作者
Gharamti, Mohamad E. [1 ]
Ait-El-Fquih, Boujemaa [2 ]
Hoteit, Ibrahim [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, Earth Sci & Engn, Thuwal 23955, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci, Thuwal 23955, Saudi Arabia
关键词
DATA ASSIMILATION;
D O I
10.1007/978-3-319-25138-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following a state-parameters joint augmentation strategy. In this study, we introduce a new smoothing-based joint EnKF scheme, in which we introduce a one-step-ahead smoothing of the state before updating the parameters. Numerical experiments are performed with a two-dimensional synthetic subsurface contaminant transport model. The improved performance of the proposed joint EnKF scheme compared to the standard joint EnKF compensates for the modest increase in the computational cost.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [31] Joint state and parameter estimation of two-dimensional soil water flow model based on Ensemble Kalman Filter method
    Liu K.
    Huang G.
    Shuili Xuebao/Journal of Hydraulic Engineering, 2019, 50 (03): : 399 - 408
  • [32] Parameter and state estimation with ensemble Kalman filter based algorithms for convective-scale applications
    Ruckstuhl, Y. M.
    Janjic, T.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (712) : 826 - 841
  • [33] Joint Unscented Kalman Filter for State and Parameter Estimation in Vehicle Dynamics
    Wielitzka, Mark
    Dagen, Matthias
    Ortmaier, Tobias
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1945 - 1950
  • [34] Improving parameter and state estimation of a hydrological model with the ensemble square root filter
    Li, Ning
    Kinzelbach, Wolfgang
    Li, Haitao
    Li, Wenpeng
    Chen, Fei
    ADVANCES IN WATER RESOURCES, 2021, 147
  • [35] Dynamic State Estimation and Parameter Calibration of a DFIG Using the Ensemble Kalman Filter
    Fan, Rui
    Huang, Zhenyu
    Wang, Shaobu
    Diao, Ruisheng
    Meng, Da
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [36] Joint State-Parameter Estimation for Active Vehicle Suspensions: A Takagi-Sugeno Kalman Filtering Approach
    Pletschen, Nils
    Barthelmes, Stefan
    Lohmann, Boris
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1545 - 1550
  • [37] A One-Step-Ahead Pseudo-DIC for Comparison of Bayesian State-Space Models
    Millar, R. B.
    McKechnie, S.
    BIOMETRICS, 2014, 70 (04) : 972 - 980
  • [38] Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter
    Zhang, Feng
    Feng, Jingan
    Qi, Dengliang
    Liu, Ya
    Shao, Wenping
    Qi, Jiaao
    Lin, Yuangang
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (06) : 1553 - 1566
  • [39] Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter
    Feng Zhang
    Jingan Feng
    Dengliang Qi
    Ya Liu
    Wenping Shao
    Jiaao Qi
    Yuangang Lin
    International Journal of Automotive Technology, 2023, 24 : 1553 - 1566
  • [40] A smoothing filter based on an analogue of a Kalman filter for a guaranteed estimation of the state of dynamical systems
    Shmatkov, A. M.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2015, 79 (04): : 350 - 357