Joint Unscented Kalman Filter for State and Parameter Estimation in Vehicle Dynamics

被引:0
|
作者
Wielitzka, Mark [1 ]
Dagen, Matthias [2 ]
Ortmaier, Tobias [2 ]
机构
[1] Leibniz Univ Hannover, Res Assistent Inst Mechatron Syst, D-30167 Hannover, Germany
[2] Inst Mechatron Syst, Hannover, Germany
关键词
TIRE-ROAD FORCES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advanced driver assistance systems in modern vehicles have gained interest in the past decades. For most of these systems accurate knowledge about the current driving state, describing the vehicle's stability, and certain parameters is beneficial for improved performance. Especially, a robust estimation of the vehicle's side-slip angle, and, furthermore, knowledge about some influential system parameters, like the vehicle's mass or its moment of inertia, has vast potential to improve the state estimation's accuracy and, therefore, improve the assistance system's performance. In this paper an online estimation of the vehicle's side-slip angle and additional estimation of the mass and moment of inertia, separately and simultaneously is presented using the joint Unscented Kalman Filter. The state estimation results are validated by comparing to measurements taken on a VW Golf VII. The parameter estimation results are verified by comparing to results obtained using a global offline identification algorithm.
引用
收藏
页码:1945 / 1950
页数:6
相关论文
共 50 条
  • [1] Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter
    Zhang, Feng
    Feng, Jingan
    Qi, Dengliang
    Liu, Ya
    Shao, Wenping
    Qi, Jiaao
    Lin, Yuangang
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (06) : 1553 - 1566
  • [2] Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter
    Feng Zhang
    Jingan Feng
    Dengliang Qi
    Ya Liu
    Wenping Shao
    Jiaao Qi
    Yuangang Lin
    [J]. International Journal of Automotive Technology, 2023, 24 : 1553 - 1566
  • [3] Unscented Kalman filter for vehicle state estimation
    Antonov, S.
    Fehn, A.
    Kugi, A.
    [J]. VEHICLE SYSTEM DYNAMICS, 2011, 49 (09) : 1497 - 1520
  • [4] Joint Unscented Kalman Filter for State and Parameter Estimation in Managed Pressure Drilling
    Mahdianfar, Hessam
    Pavlov, Alexey
    Aamo, Ole Morten
    [J]. 2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1645 - 1650
  • [5] Vehicle State Information Estimation with the Unscented Kalman Filter
    Ren, Hongbin
    Chen, Sizhong
    Liu, Gang
    Zheng, Kaifeng
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [6] Application of Unscented Kalman Filter to Vehicle State Estimation
    Zhu, Tianjun
    Zheng, Hongyan
    [J]. 2008 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL 2, PROCEEDINGS, 2008, : 135 - +
  • [7] State Estimation of Vehicle's Lateral Dynamics using Unscented Kalman Filter
    Wielitzka, Mark
    Dagen, Matthias
    Ortmaier, Tobias
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5015 - 5020
  • [8] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    [J]. Journal of Computational Neuroscience, 2023, 51 : 223 - 237
  • [9] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Azzalini, Loic J.
    Crompton, David
    D'Eleuterio, Gabriele M. T.
    Skinner, Frances
    Lankarany, Milad
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 (02) : 223 - 237
  • [10] AN IMPROVED DUAL UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER ESTIMATION
    Yu, Anxi
    Liu, Ye
    Zhu, Jubo
    Dong, Zhen
    [J]. ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1427 - 1440