Adaptive nonlinear observer for state and unknown parameter estimation in noisy systems

被引:9
|
作者
Vijayaraghavan, Krishna [1 ]
Valibeygi, Amir [1 ]
机构
[1] Simon Fraser Univ, Sch Mech Syst Engn, Surrey, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
adaptive nonlinear observer; sensor noise; parameter estimation; INDUCTION-MOTOR DRIVES;
D O I
10.1080/00207179.2015.1057231
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel adaptive observer for Lipschitz nonlinear systems and dissipative nonlinear systems in the presence of disturbances and sensor noise. The observer is based on an H infinity observer that can estimate both the system states and unknown parameters by minimising a cost function consisting of the sum of the square integrals of the estimation errors in the states and unknown parameters. The paper presents necessary and sufficient conditions for the existence of the observer, and the equations for determining observer gains are formulated as linear matrix inequalities (LMIs) that can be solved offline using commercially available LMI solvers. The observer design has also been extended to the case of time-varying unknown parameters. The use of the observer is demonstrated through illustrative examples and the performance is compared with extended Kalman filtering. Compared to previous results on nonlinear observers, the proposed observer is more computationally efficient, and guarantees state and parameter estimation for two very broad classes of nonlinear systems (Lipschitz and dissipative nonlinear systems) in the presence of input disturbances and sensor noise. In addition, the proposed observer does not require online computation of the observer gain.
引用
收藏
页码:38 / 54
页数:17
相关论文
共 50 条
  • [1] Adaptive observer for simultaneous estimation of state and parameter for a class of nonlinear systems
    Zheng, Gang
    Boutat, Driss
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 1876 - 1880
  • [2] Parameter and State Estimation for Uncertain Nonlinear Systems by Adaptive Observer Based on Differential Evolution Algorithm
    Yang, Xiaoliu
    Li, Zetao
    Dahhou, Boutaib
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [3] Nonlinear observer for simultaneous states and unknown parameter estimation
    Vijayaraghavan, Krishna
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (12) : 2263 - 2273
  • [4] Adaptive Parameter Estimation-based Observer Design for Nonlinear Systems
    Xing, Yashan
    Na, Jing
    Costa-Castello, Ramon
    Gao, Guanbin
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 4170 - 4175
  • [5] State and parameter estimation of nonlinear systems: a multi-observer approach
    Chong, Michelle S.
    Nesic, Dragan
    Postoyan, Romain
    Kuhlmann, Levin
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1067 - 1072
  • [6] Joint Parameter and State Estimation of Noisy Discrete-Time Nonlinear Systems: A Supervisory Multi-Observer Approach
    Meijer, T. J.
    Dolk, V. S.
    Chong, M. S.
    Postoyan, R.
    de Jager, B.
    Nesic, D.
    Heemels, W. P. M. H.
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5163 - 5168
  • [7] Adaptive Observer for a Large Class of Nonlinear Systems with Exponential Convergence of Parameter Estimation
    Khayati, Karim
    Zhu, Jiang
    [J]. 2013 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2013, : 100 - 105
  • [8] Joint estimation of state, parameter, and unknown input for nonlinear systems: A composite estimation scheme
    Wang, Licheng
    Luo, Qi
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (18) : 9519 - 9537
  • [9] Supervisory observer for parameter and state estimation of nonlinear systems using the DIRECT algorithm
    Chong, Michelle S.
    Postoyan, Romain
    Khong, Sei Zhen
    Nesic, Dragan
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [10] State and Parameter Estimation: A Nonlinear Luenberger Observer Approach
    Afri, Chouaib
    Andrieu, Vincent
    Bako, Laurent
    Dufour, Pascal
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 973 - 980