Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors

被引:22
|
作者
Wu, Yuanshan [2 ]
Ma, Yanyuan [3 ]
Yin, Guosheng [1 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Censored data; Check function; Corrected estimating equation; Kernel smoothing; Measurement error; Regression quantile; Semiparametric method; Survival analysis; LINEAR RANK-TESTS; MEDIAN REGRESSION; SURVIVAL ANALYSIS; ESTIMATOR; MODELS;
D O I
10.1080/01621459.2014.989323
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Censored quantile regression is an important alternative to the Cox proportional hazards model in survival analysis. In contrast to the usual central covariate effects, quantile regression can effectively characterize the covariate effects at different quantiles of the survival time. When covariates are measured with errors, it is known that naively treating mismeasured covariates as error-free would result in estimation bias. Under censored quantile regression, we propose smoothed and corrected estimating equations to obtain consistent estimators. We establish consistency and asymptotic normality for the proposed estimators of quantile regression coefficients. Compared with the naive estimator, the proposed method can eliminate the estimation bias under various measurement error distributions and model error distributions. We conduct simulation studies to examine the finite-sample properties of the new method and apply it to a lung cancer study. Supplementary materials for this article are available online.
引用
收藏
页码:1670 / 1683
页数:14
相关论文
共 50 条
  • [31] Assessing quantile prediction with censored quantile regression models
    Li, Ruosha
    Peng, Limin
    [J]. BIOMETRICS, 2017, 73 (02) : 517 - 528
  • [32] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    [J]. BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [33] A quantile regression estimator for censored data
    Leng, Chenlei
    Tong, Xingwei
    [J]. BERNOULLI, 2013, 19 (01) : 344 - 361
  • [34] Censored quantile regression for residual lifetimes
    Kim, Mi-Ok
    Zhou, Mai
    Jeong, Jong-Hyeon
    [J]. LIFETIME DATA ANALYSIS, 2012, 18 (02) : 177 - 194
  • [35] Regularized linear censored quantile regression
    Son, Minjeong
    Choi, Taehwa
    Shin, Seung Jun
    Jung, Yoonsuh
    Choi, Sangbum
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 589 - 607
  • [36] Robust Inference for Censored Quantile Regression
    Tang, Yuanyuan
    Wang, Xiaorui
    Zhu, Jianming
    Lin, Hongmei
    Tang, Yanlin
    Tong, Tiejun
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [37] Locally Weighted Censored Quantile Regression
    Wang, Huixia Judy
    Wang, Lan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1117 - 1128
  • [38] Partially linear censored quantile regression
    Tereza Neocleous
    Stephen Portnoy
    [J]. Lifetime Data Analysis, 2009, 15 : 357 - 378
  • [39] Weighted l1-Penalized Corrected Quantile Regression for High-Dimensional Temporally Dependent Measurement Errors
    Bhattacharjee, Monika
    Chakraborty, Nilanjan
    Koul, Hira L.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (5-6) : 442 - 473
  • [40] Moment estimation for censored quantile regression
    Wang, Qian
    Chen, Songnian
    [J]. ECONOMETRIC REVIEWS, 2021, 40 (09) : 815 - 829