Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors

被引:22
|
作者
Wu, Yuanshan [2 ]
Ma, Yanyuan [3 ]
Yin, Guosheng [1 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Censored data; Check function; Corrected estimating equation; Kernel smoothing; Measurement error; Regression quantile; Semiparametric method; Survival analysis; LINEAR RANK-TESTS; MEDIAN REGRESSION; SURVIVAL ANALYSIS; ESTIMATOR; MODELS;
D O I
10.1080/01621459.2014.989323
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Censored quantile regression is an important alternative to the Cox proportional hazards model in survival analysis. In contrast to the usual central covariate effects, quantile regression can effectively characterize the covariate effects at different quantiles of the survival time. When covariates are measured with errors, it is known that naively treating mismeasured covariates as error-free would result in estimation bias. Under censored quantile regression, we propose smoothed and corrected estimating equations to obtain consistent estimators. We establish consistency and asymptotic normality for the proposed estimators of quantile regression coefficients. Compared with the naive estimator, the proposed method can eliminate the estimation bias under various measurement error distributions and model error distributions. We conduct simulation studies to examine the finite-sample properties of the new method and apply it to a lung cancer study. Supplementary materials for this article are available online.
引用
收藏
页码:1670 / 1683
页数:14
相关论文
共 50 条
  • [41] Partially linear censored quantile regression
    Neocleous, Tereza
    Portnoy, Stephen
    [J]. LIFETIME DATA ANALYSIS, 2009, 15 (03) : 357 - 378
  • [42] Quantile regression with doubly censored data
    Lin, Guixian
    He, Xuming
    Portnoy, Stephen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 797 - 812
  • [43] Computational aspects of censored quantile regression
    Fitzenberger, B
    [J]. L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 171 - 186
  • [44] HIGH DIMENSIONAL CENSORED QUANTILE REGRESSION
    Zheng, Qi
    Peng, Limin
    He, Xuming
    [J]. ANNALS OF STATISTICS, 2018, 46 (01): : 308 - 343
  • [45] Moment estimation for censored quantile regression
    Wang, Qian
    Chen, Songnian
    [J]. ECONOMETRIC REVIEWS, 2021, 40 (09) : 815 - 829
  • [46] Quantile Regression for Doubly Censored Data
    Ji, Shuang
    Peng, Limin
    Cheng, Yu
    Lai, HuiChuan
    [J]. BIOMETRICS, 2012, 68 (01) : 101 - 112
  • [47] Quantile regression for interval censored data
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 3848 - 3863
  • [48] Efficient Estimation for Censored Quantile Regression
    Lee, Sze Ming
    Sit, Tony
    Xu, Gongjun
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2762 - 2775
  • [49] CENSORED QUANTILE REGRESSION WITH VARYING COEFFICIENTS
    Yin, Guosheng
    Zeng, Donglin
    Li, Hui
    [J]. STATISTICA SINICA, 2014, 24 (02) : 855 - 870
  • [50] Weighted l1-Penalized Corrected Quantile Regression for High-Dimensional Temporally Dependent Measurement Errors
    Bhattacharjee, Monika
    Chakraborty, Nilanjan
    Koul, Hira L.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (5-6) : 442 - 473