A bound on the number of Nash equilibria in a coordination game

被引:5
|
作者
Quint, T [1 ]
Shubik, M
机构
[1] Univ Nevada, Dept Math, Reno, NV 89557 USA
[2] Yale Univ, Cowles Fdn, New Haven, CT 06520 USA
关键词
Nash equilibrium; bimatrix game; coordination game; linear complementarity problem;
D O I
10.1016/S0165-1765(02)00143-X
中图分类号
F [经济];
学科分类号
02 ;
摘要
We prove that a 'nondegenerate' m X n coordination game can have at most 2(M) - I Nash equilibria, where M = min(m,n). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:323 / 327
页数:5
相关论文
共 50 条
  • [31] The maximal number of regular totally mixed Nash equilibria
    McKelvey, RD
    McLennan, A
    JOURNAL OF ECONOMIC THEORY, 1997, 72 (02) : 411 - 425
  • [32] Pure nash equilibria in games with a large number of actions
    Alvarez, C
    Gabarró, J
    Serna, M
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2005, PROCEEDINGS, 2005, 3618 : 95 - 106
  • [33] On the number of pure strategy Nash equilibria in random games
    Rinott, Y
    Scarsini, M
    GAMES AND ECONOMIC BEHAVIOR, 2000, 33 (02) : 274 - 293
  • [34] Strictly pure nash equilibria and expected equilibria in a symmetrical 0-1game and its dual game
    Jiang, Dianyu
    ICIC Express Letters, 2009, 3 (03): : 295 - 300
  • [35] On approximate Nash equilibria of the two-source connection game
    Caskurlu, Bugra
    Acikalin, Utku Umur
    Kizilkaya, Fatih Erdem
    Ekici, Ozgun
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (06) : 2206 - 2220
  • [36] Quantum game theory and the complexity of approximating quantum Nash equilibria
    Bostanci, John
    Watrous, John
    QUANTUM, 2022, 6
  • [37] Methods for computing Nash equilibria of a location-quantity game
    Saiz, M. Elena
    Hendrix, Eligius M. T.
    COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (10) : 3311 - 3330
  • [38] The game world is flat: The complexity of Nash equilibria in succinct games
    Daskalakis, Constantinos
    Fabrikant, Alex
    Papadimitriou, Christos H.
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, 2006, 4051 : 513 - 524
  • [39] Decentralized Nash Equilibria Learning for Online Game With Bandit Feedback
    Meng, Min
    Li, Xiuxian
    Chen, Jie
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (06) : 4050 - 4057
  • [40] Berge and Nash Equilibria in a Linear-Quadratic Differential Game
    Zhukovskiy, V. I.
    Gorbatov, A. S.
    Kudryavtsev, K. N.
    AUTOMATION AND REMOTE CONTROL, 2020, 81 (11) : 2108 - 2131