A bound on the number of Nash equilibria in a coordination game

被引:5
|
作者
Quint, T [1 ]
Shubik, M
机构
[1] Univ Nevada, Dept Math, Reno, NV 89557 USA
[2] Yale Univ, Cowles Fdn, New Haven, CT 06520 USA
关键词
Nash equilibrium; bimatrix game; coordination game; linear complementarity problem;
D O I
10.1016/S0165-1765(02)00143-X
中图分类号
F [经济];
学科分类号
02 ;
摘要
We prove that a 'nondegenerate' m X n coordination game can have at most 2(M) - I Nash equilibria, where M = min(m,n). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:323 / 327
页数:5
相关论文
共 50 条
  • [21] Mixed-strategy equilibria in the Nash Demand Game
    Malueg, David A.
    [J]. ECONOMIC THEORY, 2010, 44 (02) : 243 - 270
  • [22] Mixed-strategy equilibria in the Nash Demand Game
    David A. Malueg
    [J]. Economic Theory, 2010, 44 : 243 - 270
  • [23] The structure and complexity of Nash equilibria for a selfish routing game
    Fotakis, D
    Kontogiannis, S
    Koutsoupias, E
    Mavronicolas, M
    Spirakis, P
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, 2002, 2380 : 123 - 134
  • [24] Uniqueness of Nash equilibria in a quantum Cournot duopoly game
    Sekiguchi, Yohei
    Sakahara, Kiri
    Sato, Takashi
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (14)
  • [25] On Nash equilibria in Eisert-Lewenstein-Wilkens game
    Bolonek-Lason, Katarzyna
    Kosinski, Piotr
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (08)
  • [26] THE SET OF NASH EQUILIBRIA OF A SUPERMODULAR GAME IS A COMPLETE LATTICE
    ZHOU, L
    [J]. GAMES AND ECONOMIC BEHAVIOR, 1994, 7 (02) : 295 - 300
  • [27] The structure and complexity of Nash equilibria for a selfish routing game
    Fotakis, Dimitris
    Kontogiannis, Spyros
    Koutsoupias, Elias
    Mavronicolas, Marios
    Spirakis, Paul
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (36) : 3305 - 3326
  • [28] On the existence of Nash equilibria in an asymmetric tax competition game
    Taugourdeau, Emmanuelle
    Ziad, Abderrahmane
    [J]. REGIONAL SCIENCE AND URBAN ECONOMICS, 2011, 41 (05) : 439 - 445
  • [29] On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies
    Bekesiene, Svajone
    Mashchenko, Serhii
    [J]. MATHEMATICS, 2023, 11 (22)
  • [30] The maximal number of regular totally mixed Nash equilibria
    McKelvey, RD
    McLennan, A
    [J]. JOURNAL OF ECONOMIC THEORY, 1997, 72 (02) : 411 - 425