A bound on the number of Nash equilibria in a coordination game

被引:5
|
作者
Quint, T [1 ]
Shubik, M
机构
[1] Univ Nevada, Dept Math, Reno, NV 89557 USA
[2] Yale Univ, Cowles Fdn, New Haven, CT 06520 USA
关键词
Nash equilibrium; bimatrix game; coordination game; linear complementarity problem;
D O I
10.1016/S0165-1765(02)00143-X
中图分类号
F [经济];
学科分类号
02 ;
摘要
We prove that a 'nondegenerate' m X n coordination game can have at most 2(M) - I Nash equilibria, where M = min(m,n). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:323 / 327
页数:5
相关论文
共 50 条
  • [41] The efficiency of Nash equilibria in the load balancing game with a randomizing scheduler
    Chen, Xujin
    Hu, Xiaodong
    Wang, Chenhao
    Wu, Xiaoying
    THEORETICAL COMPUTER SCIENCE, 2020, 838 : 180 - 194
  • [42] Pure-strategy Nash equilibria in an advertising game with interference
    Viscolani, Bruno
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 216 (03) : 605 - 612
  • [43] Stability of Nash equilibria in the congestion game under Replicator dynamics
    Drighes, Benjamin
    Krichene, Walid
    Bayen, Alexandre
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1923 - 1929
  • [44] Entanglement and dynamic stability of Nash equilibria in a symmetric quantum game
    Iqbal, A
    Toor, AH
    PHYSICS LETTERS A, 2001, 286 (04) : 245 - 250
  • [45] Quantum game theory and the complexity of approximating quantum Nash equilibria
    Bostanci, John
    Watrous, John
    QUANTUM, 2022, 6
  • [46] Zero-Sum Game Techniques for Approximate Nash Equilibria
    Czumaj, Artur
    Fasoulakis, Michail
    Jurdzinski, Marcin
    AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 1514 - 1516
  • [47] Berge and Nash Equilibria in a Linear-Quadratic Differential Game
    V. I. Zhukovskiy
    A. S. Gorbatov
    K. N. Kudryavtsev
    Automation and Remote Control, 2020, 81 : 2108 - 2131
  • [48] Nash equilibria in the two-player kidney exchange game
    Carvalho, Margarida
    Lodi, Andrea
    Pedroso, Joao Pedro
    Viana, Ana
    MATHEMATICAL PROGRAMMING, 2017, 161 (1-2) : 389 - 417
  • [49] Quantum correlations and Nash equilibria of a bi-matrix game
    Iqbal, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (29): : L353 - L359
  • [50] Nash equilibria in the two-player kidney exchange game
    Margarida Carvalho
    Andrea Lodi
    João Pedro Pedroso
    Ana Viana
    Mathematical Programming, 2017, 161 : 389 - 417