The maximal number of regular totally mixed Nash equilibria

被引:37
|
作者
McKelvey, RD [1 ]
McLennan, A [1 ]
机构
[1] UNIV MINNESOTA, DEPT ECON, MINNEAPOLIS, MN 55455 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jeth.1996.2214
中图分类号
F [经济];
学科分类号
02 ;
摘要
Let S=Pi(i=1)(n) S-i be the strategy space for a finite n-person game. Let (s(10),...,s(n0)) epsilon S be any strategy n-tuple, and let T-i=S-i-{s(i0)}, i=1,...,n. We show that the maximum number of regular totally mixed Nash equilibria of a game with strategy sets S-i is the number of partitions P={P-1,...,P-n} of boolean OR(r) T-i such that, for each i, \P-i\=\T-t\ and P-i boolean AND T-i=0. The bound is tight, as we give a method for constructing a game with the maximum number of equilibria. (C) 1997 Academic Press.
引用
收藏
页码:411 / 425
页数:15
相关论文
共 50 条
  • [1] A parametric representation of totally mixed Nash equilibria
    Jeronimo, Gabriela
    Perrucci, Daniel
    Sabia, Juan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1126 - 1141
  • [2] The maximal generic number of pure Nash equilibria
    McLennan, A
    [J]. JOURNAL OF ECONOMIC THEORY, 1997, 72 (02) : 408 - 410
  • [3] On the maximal number of Nash equilibria in an n x n bimatrix game
    Keiding, H
    [J]. GAMES AND ECONOMIC BEHAVIOR, 1997, 21 (1-2) : 148 - 160
  • [4] On the complexity of uniformly mixed nash equilibria and related regular subgraph problems
    Bonifaci, V
    Di Iorio, U
    Laura, L
    [J]. FUNDAMENTALS OF COMPUTATIONAL THEORY, PROCEEDINGS, 2005, 3623 : 197 - 208
  • [5] Strong Nash equilibria and mixed strategies
    Braggion, Eleonora
    Gatti, Nicola
    Lucchetti, Roberto
    Sandholm, Tuomas
    von Stengel, Bernhard
    [J]. INTERNATIONAL JOURNAL OF GAME THEORY, 2020, 49 (03) : 699 - 710
  • [6] On the existence of mixed strategy Nash equilibria
    Prokopovych, Pavlo
    Yannelis, Nicholas C.
    [J]. JOURNAL OF MATHEMATICAL ECONOMICS, 2014, 52 : 87 - 97
  • [7] Strong Nash equilibria and mixed strategies
    Eleonora Braggion
    Nicola Gatti
    Roberto Lucchetti
    Tuomas Sandholm
    Bernhard von Stengel
    [J]. International Journal of Game Theory, 2020, 49 : 699 - 710
  • [8] A theorem on the number of Nash equilibria in a bimatrix game
    Quint, T
    Shubik, M
    [J]. INTERNATIONAL JOURNAL OF GAME THEORY, 1997, 26 (03) : 353 - 359
  • [9] A theorem on the number of Nash equilibria in a bimatrix game
    Thomas Quint
    Martin Shubik
    [J]. International Journal of Game Theory, 1997, 26 : 353 - 359
  • [10] A bound on the number of Nash equilibria in a coordination game
    Quint, T
    Shubik, M
    [J]. ECONOMICS LETTERS, 2002, 77 (03) : 323 - 327