The maximal number of regular totally mixed Nash equilibria

被引:37
|
作者
McKelvey, RD [1 ]
McLennan, A [1 ]
机构
[1] UNIV MINNESOTA, DEPT ECON, MINNEAPOLIS, MN 55455 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jeth.1996.2214
中图分类号
F [经济];
学科分类号
02 ;
摘要
Let S=Pi(i=1)(n) S-i be the strategy space for a finite n-person game. Let (s(10),...,s(n0)) epsilon S be any strategy n-tuple, and let T-i=S-i-{s(i0)}, i=1,...,n. We show that the maximum number of regular totally mixed Nash equilibria of a game with strategy sets S-i is the number of partitions P={P-1,...,P-n} of boolean OR(r) T-i such that, for each i, \P-i\=\T-t\ and P-i boolean AND T-i=0. The bound is tight, as we give a method for constructing a game with the maximum number of equilibria. (C) 1997 Academic Press.
引用
收藏
页码:411 / 425
页数:15
相关论文
共 50 条
  • [21] REGULAR BEHAVIOR OF THE MAXIMAL HYPERGRAPH CHROMATIC NUMBER
    Cherkashin, Danila
    Petrov, Fedor
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1326 - 1333
  • [22] Mixed Nash equilibria for continuous games and reverse mathematics
    Peng, NingNing
    Peng, Weiguang
    Yamazaki, Takeshi
    [J]. QUAESTIONES MATHEMATICAE, 2023, 46 (04) : 621 - 632
  • [23] Finding Mixed Nash Equilibria of Generative Adversarial Networks
    Hsieh, Ya-Ping
    Liu, Chen
    Cevher, Volkan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [24] Stability of Mixed Nash Equilibria in Symmetric Quantum Games
    A.Iqbal A.H.Toor Department of Electronics
    [J]. Communications in Theoretical Physics, 2004, 42 (09) : 335 - 338
  • [25] Mixed-strategy equilibria in the Nash Demand Game
    Malueg, David A.
    [J]. ECONOMIC THEORY, 2010, 44 (02) : 243 - 270
  • [26] Mixed-strategy equilibria in the Nash Demand Game
    David A. Malueg
    [J]. Economic Theory, 2010, 44 : 243 - 270
  • [27] New results on the complexity of uniformly mixed Nash equilibria
    Bonifaci, V
    Di Iorio, U
    Laura, L
    [J]. INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2005, 3828 : 1023 - 1032
  • [28] Finding mixed strategy Nash equilibria with decision trees
    Cobb, Barry R.
    Sen, Tinni
    [J]. INTERNATIONAL REVIEW OF ECONOMICS EDUCATION, 2014, 15 : 43 - 50
  • [29] Stability of mixed Nash equilibria in symmetric quantum games
    Iqbal, A
    Toor, AH
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (03) : 335 - 338
  • [30] Oddness of the number of Nash equilibria: The case of polynomial payoff functions
    Bich, Philippe
    Fixary, Julien
    [J]. GAMES AND ECONOMIC BEHAVIOR, 2024, 145 : 510 - 525