The maximal number of regular totally mixed Nash equilibria

被引:37
|
作者
McKelvey, RD [1 ]
McLennan, A [1 ]
机构
[1] UNIV MINNESOTA, DEPT ECON, MINNEAPOLIS, MN 55455 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jeth.1996.2214
中图分类号
F [经济];
学科分类号
02 ;
摘要
Let S=Pi(i=1)(n) S-i be the strategy space for a finite n-person game. Let (s(10),...,s(n0)) epsilon S be any strategy n-tuple, and let T-i=S-i-{s(i0)}, i=1,...,n. We show that the maximum number of regular totally mixed Nash equilibria of a game with strategy sets S-i is the number of partitions P={P-1,...,P-n} of boolean OR(r) T-i such that, for each i, \P-i\=\T-t\ and P-i boolean AND T-i=0. The bound is tight, as we give a method for constructing a game with the maximum number of equilibria. (C) 1997 Academic Press.
引用
收藏
页码:411 / 425
页数:15
相关论文
共 50 条