Image inpainting using reproducing kernel Hilbert space and Heaviside functions

被引:7
|
作者
Wang, Si [1 ]
Guo, Weihong [2 ]
Huang, Ting -Zhu [1 ]
Raskutti, Garvesh [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[3] Univ Wisconsin Madison, Dept Stat, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Image inpainting; Reproducing kernel Hilbert space; Heaviside function; Edge; OBJECT REMOVAL; ALGORITHMS;
D O I
10.1016/j.cam.2016.08.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Image inpainting, a technique of repairing damaged images, is an important topic in image processing. In this paper, we solve the problem from an intensity function estimation perspective. We assume the underlying image is defined on a continuous domain and belongs to a space spanned by a basis of a reproducing kernel Hilbert space and some variations of the Heaviside function. The reproducing kernel Hilbert space is used to model the smooth component of the image while Heaviside function variations are used to model the edges. The coefficients of the redundant basis are computed by the discrete intensity at undamaged domain. We test the proposed model through various images. Numerical experiments show the effectiveness of the proposed method, especially in recovering edges. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 50 条
  • [31] A New Application Of Reproducing Kernel Hilbert Space Method
    Akgul, A.
    Sakar, M. Giyas
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [32] A reproducing kernel Hilbert space approach for speech enhancement
    Gauci, Oliver
    Debono, Carl J.
    Micallef, Paul
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 831 - 835
  • [33] Modelling Policies in MDPs in Reproducing Kernel Hilbert Space
    Lever, Guy
    Stafford, Ronnie
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 590 - 598
  • [34] THE REPRODUCING KERNEL HILBERT SPACE BASED ON WAVELET TRANSFORM
    Deng, Cai-Xia
    Li, Shuai
    Fu, Zuo-Xian
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 370 - 374
  • [35] Sampling analysis in the complex reproducing kernel Hilbert space
    Li, Bing-Zhao
    Ji, Qing-Hua
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2015, 26 : 109 - 120
  • [36] Step size adaptation in reproducing kernel Hilbert space
    Vishwanathan, S. V. N.
    Schraudolph, Nicol N.
    Smola, Alex J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1107 - 1133
  • [37] Generalized Mahalanobis depth in the reproducing kernel Hilbert space
    Yonggang Hu
    Yong Wang
    Yi Wu
    Qiang Li
    Chenping Hou
    Statistical Papers, 2011, 52 : 511 - 522
  • [38] Kernel partial least squares regression in Reproducing Kernel Hilbert Space
    Rosipal, R
    Trejo, LJ
    JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 97 - 123
  • [39] MULTISCALE APPROXIMATION AND REPRODUCING KERNEL HILBERT SPACE METHODS
    Griebel, Michael
    Rieger, Christian
    Zwicknagl, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 852 - 873
  • [40] Kernel center adaptation in the reproducing kernel Hilbert space embedding method
    Paruchuri, Sai Tej
    Guo, Jia
    Kurdila, Andrew
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (07) : 1562 - 1583