Sampling analysis in the complex reproducing kernel Hilbert space

被引:4
|
作者
Li, Bing-Zhao [1 ,2 ]
Ji, Qing-Hua [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
reproducing kernel Hilbert space (RKHS); sampling theorem; linear canonical transform (LCT); LINEAR CANONICAL TRANSFORM; BAND-LIMITED SIGNALS; FRACTIONAL FOURIER-TRANSFORM; SPLINE SUBSPACES; RECONSTRUCTION; CONVOLUTION; THEOREMS;
D O I
10.1017/S0956792514000357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider and analyse sampling theories in the reproducing kernel Hilbert space (RKHS) in this paper. The reconstruction of a function in an RKHS from a given set of sampling points and the reproducing kernel of the RKHS is discussed. Firstly, we analyse and give the optimal approximation of any function belonging to the RKHS in detail. Then, a necessary and sufficient condition to perfectly reconstruct the function in the corresponding RKHS of complex-valued functions is investigated. Based on the derived results, another proof of the sampling theorem in the linear canonical transform (LCT) domain is given. Finally, the optimal approximation of any band-limited function in the LCT domain from infinite sampling points is also analysed and discussed.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 50 条
  • [1] Sampling Theory in Abstract Reproducing Kernel Hilbert Space
    Yoon Mi Hong
    Jong Min Kim
    Kil H. Kwon
    Sampling Theory in Signal and Image Processing, 2007, 6 (1): : 109 - 121
  • [2] Importance sampling policy gradient algorithms in reproducing kernel Hilbert space
    Tuyen Pham Le
    Vien Anh Ngo
    P. Marlith Jaramillo
    TaeChoong Chung
    Artificial Intelligence Review, 2019, 52 : 2039 - 2059
  • [3] Importance sampling policy gradient algorithms in reproducing kernel Hilbert space
    Tuyen Pham Le
    Vien Anh Ngo
    Jaramillo, P. Marlith
    Chung, TaeChoong
    ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (03) : 2039 - 2059
  • [4] An Example of a Reproducing Kernel Hilbert Space
    Tutaj, Edward
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (01) : 193 - 221
  • [5] An Example of a Reproducing Kernel Hilbert Space
    Edward Tutaj
    Complex Analysis and Operator Theory, 2019, 13 : 193 - 221
  • [6] The Henderson Smoother in Reproducing Kernel Hilbert Space
    Dagum, Estela Bee
    Bianconcini, Silvia
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2008, 26 (04) : 536 - 545
  • [7] Regularization in a functional reproducing kernel Hilbert space
    Wang, Rui
    Xu, Yuesheng
    JOURNAL OF COMPLEXITY, 2021, 66
  • [8] A Brief Digest on Reproducing Kernel Hilbert Space
    Tong, Shou-yu
    Cong, Fu-zhong
    Wang, Zhi-xia
    INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS AND ELECTRONIC ENGINEERING (CMEE 2016), 2016,
  • [9] Optimal sampling points in reproducing kernel Hilbert spaces
    Wang, Rui
    Zhang, Haizhang
    JOURNAL OF COMPLEXITY, 2016, 34 : 129 - 151
  • [10] Density of sampling and interpolation in reproducing kernel Hilbert spaces
    Fuehr, Hartmut
    Groechenig, Karlheinz
    Haimi, Antti
    Klotz, Andreas
    Romero, Jose Luis
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 663 - 686