Sampling analysis in the complex reproducing kernel Hilbert space

被引:4
|
作者
Li, Bing-Zhao [1 ,2 ]
Ji, Qing-Hua [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
reproducing kernel Hilbert space (RKHS); sampling theorem; linear canonical transform (LCT); LINEAR CANONICAL TRANSFORM; BAND-LIMITED SIGNALS; FRACTIONAL FOURIER-TRANSFORM; SPLINE SUBSPACES; RECONSTRUCTION; CONVOLUTION; THEOREMS;
D O I
10.1017/S0956792514000357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider and analyse sampling theories in the reproducing kernel Hilbert space (RKHS) in this paper. The reconstruction of a function in an RKHS from a given set of sampling points and the reproducing kernel of the RKHS is discussed. Firstly, we analyse and give the optimal approximation of any function belonging to the RKHS in detail. Then, a necessary and sufficient condition to perfectly reconstruct the function in the corresponding RKHS of complex-valued functions is investigated. Based on the derived results, another proof of the sampling theorem in the linear canonical transform (LCT) domain is given. Finally, the optimal approximation of any band-limited function in the LCT domain from infinite sampling points is also analysed and discussed.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 50 条
  • [41] Bounds for the Berezin number of reproducing kernel Hilbert space operators
    Sen, Anirban
    Bhunia, Pintu
    Paul, Kallol
    FILOMAT, 2023, 37 (06) : 1741 - 1749
  • [42] A REPRODUCING KERNEL HILBERT SPACE FORMULATION OF THE PRINCIPLE OF RELEVANT INFORMATION
    Giraldo, Luis G. Sanchez
    Principe, Jose C.
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [43] A reproducing kernel Hilbert space approach in meshless collocation method
    Babak Azarnavid
    Mahdi Emamjome
    Mohammad Nabati
    Saeid Abbasbandy
    Computational and Applied Mathematics, 2019, 38
  • [44] Reproducing Kernel Hilbert Space vs. Frame Estimates
    Jorgensen, Palle E. T.
    Song, Myung-Sin
    MATHEMATICS, 2015, 3 (03): : 615 - 625
  • [45] Wind Power Probabilistic Forecast in the Reproducing Kernel Hilbert Space
    Gallego-Castillo, Cristobal
    Cuerva-Tejero, Alvaro
    Bessa, Ricardo J.
    Cavalcante, Laura
    2016 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), 2016,
  • [46] Reproducing Kernel Hilbert Space Associated with a Unitary Representation of a Groupoid
    Monika Drewnik
    Tomasz Miller
    Zbigniew Pasternak-Winiarski
    Complex Analysis and Operator Theory, 2021, 15
  • [47] Voice activity detection in a regularized reproducing kernel Hilbert space
    Lu, Xugang
    Unoki, Masashi
    Isotani, Ryosuke
    Kawai, Hisashi
    Nakamura, Satoshi
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 3086 - 3089
  • [48] Representation for the reproducing kernel Hilbert space method for a nonlinear system
    Akgul, Esra Karatas
    Akgul, Ali
    Khan, Yasir
    Baleanu, Dumitru
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (05): : 1345 - 1355
  • [49] Unbounded Hermitian operators and relative reproducing kernel Hilbert space
    Jorgensen, Palle E. T.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 569 - 596
  • [50] Functional additive expectile regression in the reproducing kernel Hilbert space
    Liu, Yuzi
    Peng, Ling
    Liu, Qing
    Lian, Heng
    Liu, Xiaohui
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198