Density of sampling and interpolation in reproducing kernel Hilbert spaces

被引:33
|
作者
Fuehr, Hartmut [1 ]
Groechenig, Karlheinz [2 ]
Haimi, Antti [2 ]
Klotz, Andreas [2 ]
Romero, Jose Luis [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
LOCALLY COMPACT-GROUPS; L-P SPACES; THEOREMS; LOCALIZATION; LANDAUS; FRAMES; OVERCOMPLETENESS;
D O I
10.1112/jlms.12083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive necessary density conditions for sampling and for interpolation in general reproducing kernel Hilbert spaces satisfying some natural conditions on the geometry of the space and the reproducing kernel. If the volume of shells is small compared to the volume of balls (weak annular decay property) and if the kernel possesses some off-diagonal decay or even some weaker form of localization, then there exists a critical density D with the following property: a set of sampling has density D, whereas a set of interpolation has density D. The main theorem unifies many known density theorems in signal processing, complex analysis, and harmonic analysis. For the special case of bandlimited function we recover Landau's fundamental density result. In complex analysis we rederive a critical density for generalized Fock spaces. In harmonic analysis we obtain the first general result about the density of coherent frames.
引用
收藏
页码:663 / 686
页数:24
相关论文
共 50 条
  • [1] Reproducing Kernel Hilbert Spaces and fractal interpolation
    Bouboulis, P.
    Mavroforakis, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) : 3425 - 3434
  • [2] On sparse interpolation in reproducing kernel Hilbert spaces
    Dodd, TJ
    Harrison, RF
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1962 - 1967
  • [3] Remarks on interpolation in reproducing kernel Hilbert spaces
    Bolotnikov, V
    Rodman, L
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 559 - 576
  • [4] Interpolation for multipliers on reproducing kernel Hilbert spaces
    Bolotnikov, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1373 - 1383
  • [5] Sampling Expansions and Interpolation in Unitarily Translation Invariant Reproducing Kernel Hilbert Spaces
    Cornelis V.M. van der Mee
    M.Z. Nashed
    Sebastiano Seatzu
    [J]. Advances in Computational Mathematics, 2003, 19 : 355 - 372
  • [6] Sampling expansions and interpolation in unitarily translation invariant reproducing kernel Hilbert spaces
    van der Mee, CVM
    Nashed, MZ
    Seatzu, S
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 19 (04) : 355 - 372
  • [7] Reproducing kernel Hilbert spaces via sampling in discrete spaces
    Foroutan, Mohammadreza
    Asadi, Raheleh
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (03): : 1805 - 1818
  • [8] Reproducing kernel Hilbert spaces via sampling in discrete spaces
    Mohammadreza Foroutan
    Raheleh Asadi
    [J]. The Journal of Analysis, 2023, 31 : 1805 - 1818
  • [9] Optimal sampling points in reproducing kernel Hilbert spaces
    Wang, Rui
    Zhang, Haizhang
    [J]. JOURNAL OF COMPLEXITY, 2016, 34 : 129 - 151
  • [10] Sampling Expansions in Reproducing Kernel Hilbert and Banach Spaces
    Han, Deguang
    Nashed, M. Zuhair
    Sun, Qiyu
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (9-10) : 971 - 987