Density of sampling and interpolation in reproducing kernel Hilbert spaces

被引:33
|
作者
Fuehr, Hartmut [1 ]
Groechenig, Karlheinz [2 ]
Haimi, Antti [2 ]
Klotz, Andreas [2 ]
Romero, Jose Luis [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
LOCALLY COMPACT-GROUPS; L-P SPACES; THEOREMS; LOCALIZATION; LANDAUS; FRAMES; OVERCOMPLETENESS;
D O I
10.1112/jlms.12083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive necessary density conditions for sampling and for interpolation in general reproducing kernel Hilbert spaces satisfying some natural conditions on the geometry of the space and the reproducing kernel. If the volume of shells is small compared to the volume of balls (weak annular decay property) and if the kernel possesses some off-diagonal decay or even some weaker form of localization, then there exists a critical density D with the following property: a set of sampling has density D, whereas a set of interpolation has density D. The main theorem unifies many known density theorems in signal processing, complex analysis, and harmonic analysis. For the special case of bandlimited function we recover Landau's fundamental density result. In complex analysis we rederive a critical density for generalized Fock spaces. In harmonic analysis we obtain the first general result about the density of coherent frames.
引用
收藏
页码:663 / 686
页数:24
相关论文
共 50 条
  • [41] OPERATOR INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Yamanci, Ulas
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 204 - 211
  • [42] Uncertainty Principle in Reproducing Kernel Hilbert Spaces
    Sala, Jamaluddin S.
    Canton, Recson G.
    Lintasan, Abdurajan B.
    Rasid, Regimar A.
    Artes Jr, Rosalio G.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1273 - 1279
  • [43] Distance Functions for Reproducing Kernel Hilbert Spaces
    Arcozzi, N.
    Rochberg, R.
    Sawyer, E.
    Wick, B. D.
    [J]. FUNCTION SPACES IN MODERN ANALYSIS, 2011, 547 : 25 - +
  • [44] Composition in Reproducing Kernel Hilbert Spaces a Rebours
    Szafraniec, Franciszek Hugon
    [J]. OPERATOR AND MATRIX THEORY, FUNCTION SPACES, AND APPLICATIONS, IWOTA 2022, 2024, 295 : 365 - 384
  • [45] The Feichtinger Conjecture and Reproducing Kernel Hilbert Spaces
    Lata, Sneh
    Paulsen, Vern
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (04) : 1303 - 1317
  • [46] EXPLICIT RECURSIVITY INTO REPRODUCING KERNEL HILBERT SPACES
    Tuia, Devis
    Camps-Valls, Gustavo
    Martinez-Ramon, Manel
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4148 - 4151
  • [47] Riccati inequalities and reproducing kernel Hilbert spaces
    Dubi, Chen
    Dym, Harry
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 458 - 482
  • [48] Linear dynamics in reproducing kernel Hilbert spaces
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 159
  • [49] VARIOUS INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Nguyen Du Vi Nhan
    Dinh Thanh Duc
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (01): : 221 - 237
  • [50] Radial kernels and their reproducing kernel Hilbert spaces
    Scovel, Clint
    Hush, Don
    Steinwart, Ingo
    Theiler, James
    [J]. JOURNAL OF COMPLEXITY, 2010, 26 (06) : 641 - 660