Reproducing Kernel Hilbert Spaces and fractal interpolation

被引:20
|
作者
Bouboulis, P. [1 ]
Mavroforakis, M. [2 ]
机构
[1] Univ Athens, Dept Informat & Telecommun, Athens 15784, Greece
[2] Univ Houston, Dept Comp Sci, Computat Biomed Lab, Houston, TX 77204 USA
关键词
Fractal interpolation; Reproducing Kernel Hilbert Space; Kernels; ITERATED FUNCTION SYSTEMS; INNOVATIONS REPRESENTATIONS; RKHS APPROACH; CONSTRUCTION;
D O I
10.1016/j.cam.2011.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reproducing Kernel Hilbert Spaces (RKHSs) are a very useful and powerful tool of functional analysis with application in many diverse paradigms, such as multivariate statistics and machine learning. Fractal interpolation, on the other hand, is a relatively recent technique that generalizes traditional interpolation through the introduction of self-similarity. In this work we show that the functional space of any family of (recurrent) fractal interpolation functions ((R)FIFs) constitutes an RKHS with a specific associated kernel function, thus, extending considerably the toolbox of known kernel functions and introducing fractals to the RKHS world. We also provide the means for the computation of the kernel function that corresponds to any specific fractal RKHS and give several examples. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3425 / 3434
页数:10
相关论文
共 50 条
  • [1] Reproducing Kernel Hilbert Spaces of Smooth Fractal Interpolation Functions
    Luor, Dah-Chin
    Hsieh, Liang-Yu
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [3] On sparse interpolation in reproducing kernel Hilbert spaces
    Dodd, TJ
    Harrison, RF
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1962 - 1967
  • [4] Remarks on interpolation in reproducing kernel Hilbert spaces
    Bolotnikov, V
    Rodman, L
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 559 - 576
  • [5] Interpolation for multipliers on reproducing kernel Hilbert spaces
    Bolotnikov, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1373 - 1383
  • [6] Density of sampling and interpolation in reproducing kernel Hilbert spaces
    Fuehr, Hartmut
    Groechenig, Karlheinz
    Haimi, Antti
    Klotz, Andreas
    Romero, Jose Luis
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 663 - 686
  • [7] Interpolation of monogenic functions by using reproducing kernel Hilbert spaces
    Cerejeiras, Paula
    Kaehler, Uwe
    Legatiuk, Dmitrii
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 8100 - 8114
  • [8] Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces
    Ball, JA
    Trent, TT
    Vinnikov, V
    [J]. OPERATOR THEORY AND ANALYSIS, 2001, 122 : 89 - 138
  • [9] On the Choice of Kernel for Signal Interpolation on the Sphere Using Reproducing Kernel Hilbert Spaces
    Elahi, Usama
    Khalid, Zubair
    Kennedy, Rodney A.
    [J]. 2017 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2017,
  • [10] Interpolation in reproducing kernel Hilbert spaces based on random subdivision schemes
    Cotronei, Mariantonia
    Di Salvo, Rosa
    Holschneider, Matthias
    Puccio, Luigia
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 342 - 353