Generalized Mahalanobis depth in the reproducing kernel Hilbert space

被引:0
|
作者
Yonggang Hu
Yong Wang
Yi Wu
Qiang Li
Chenping Hou
机构
[1] National University of Defense Technology,Department of Mathematics and Systems Science
来源
Statistical Papers | 2011年 / 52卷
关键词
Mahalanobis depth; Kernel method; Data depth; Statistical depth; 62H05; 62H30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, Mahalanobis depth (MHD) in the Reproducing Kernel Hilbert Space (RKHS) is proposed. First, we extend the notion of MHD to a generalized version, i.e., the generalized MHD (GHMD), to make it suitable for the small sample with singular covariance matrix. We prove that GMHD is consistent with MHD when the sample has a full-rank covariance matrix. Second, we further extend GMHD to RKHS, i.e, the kernel mapped GMHD (kmGMHD), and discuss its main properties. Numeric results show that kmGMHD can give a better depth interpretation for the sample with special shape, such as a non-convex sample set. Our proposed kmGMHD can be potentially used as a robust tool for outliers detection and data classification. In addition, we also discuss the influence of parameters on the shape of the central regions.
引用
收藏
页码:511 / 522
页数:11
相关论文
共 50 条
  • [1] Generalized Mahalanobis depth in the reproducing kernel Hilbert space
    Hu, Yonggang
    Wang, Yong
    Wu, Yi
    Li, Qiang
    Hou, Chenping
    [J]. STATISTICAL PAPERS, 2011, 52 (03) : 511 - 522
  • [2] An Example of a Reproducing Kernel Hilbert Space
    Tutaj, Edward
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (01) : 193 - 221
  • [3] An Example of a Reproducing Kernel Hilbert Space
    Edward Tutaj
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 193 - 221
  • [4] REGULARIZATION METHOD FOR THE GENERALIZED MOMENT PROBLEM IN A FUNCTIONAL REPRODUCING KERNEL HILBERT SPACE
    Liu, Qianru
    Huang, Lei
    Wang, Rui
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (01) : 61 - 80
  • [5] The Henderson Smoother in Reproducing Kernel Hilbert Space
    Dagum, Estela Bee
    Bianconcini, Silvia
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2008, 26 (04) : 536 - 545
  • [6] Regularization in a functional reproducing kernel Hilbert space
    Wang, Rui
    Xu, Yuesheng
    [J]. JOURNAL OF COMPLEXITY, 2021, 66
  • [7] A Brief Digest on Reproducing Kernel Hilbert Space
    Tong, Shou-yu
    Cong, Fu-zhong
    Wang, Zhi-xia
    [J]. INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS AND ELECTRONIC ENGINEERING (CMEE 2016), 2016,
  • [8] Reproducing kernel Hilbert space method for the solutions of generalized Kuramoto-Sivashinsky equation
    Akgul, Ali
    Bonyah, Ebenezer
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 661 - 669
  • [9] Sampling Theory in Abstract Reproducing Kernel Hilbert Space
    Yoon Mi Hong
    Jong Min Kim
    Kil H. Kwon
    [J]. Sampling Theory in Signal and Image Processing, 2007, 6 (1): : 109 - 121
  • [10] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588