Image inpainting using reproducing kernel Hilbert space and Heaviside functions

被引:7
|
作者
Wang, Si [1 ]
Guo, Weihong [2 ]
Huang, Ting -Zhu [1 ]
Raskutti, Garvesh [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[3] Univ Wisconsin Madison, Dept Stat, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Image inpainting; Reproducing kernel Hilbert space; Heaviside function; Edge; OBJECT REMOVAL; ALGORITHMS;
D O I
10.1016/j.cam.2016.08.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Image inpainting, a technique of repairing damaged images, is an important topic in image processing. In this paper, we solve the problem from an intensity function estimation perspective. We assume the underlying image is defined on a continuous domain and belongs to a space spanned by a basis of a reproducing kernel Hilbert space and some variations of the Heaviside function. The reproducing kernel Hilbert space is used to model the smooth component of the image while Heaviside function variations are used to model the edges. The coefficients of the redundant basis are computed by the discrete intensity at undamaged domain. We test the proposed model through various images. Numerical experiments show the effectiveness of the proposed method, especially in recovering edges. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 50 条
  • [41] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Choongrak Kim
    Hojin Yang
    Journal of the Korean Statistical Society, 2019, 48 : 454 - 462
  • [42] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Kim, Choongrak
    Yang, Hojin
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 454 - 462
  • [43] Least squares kernel ensemble regression in Reproducing Kernel Hilbert Space
    Shen, Xiang-Jun
    Dong, Yong
    Gou, Jian-Ping
    Zhan, Yong-Zhao
    Fan, Jianping
    NEUROCOMPUTING, 2018, 311 : 235 - 244
  • [44] Reliable Estimation of KL Divergence using a Discriminator in Reproducing Kernel Hilbert Space
    Ghimire, Sandesh
    Masoomi, Aria
    Dy, Jennifer
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [45] Novelty Detection Using Elliptical Fuzzy Clustering in a Reproducing Kernel Hilbert Space
    Kazachuk, Maria
    Petrovskiy, Mikhail
    Mashechkin, Igor
    Gorohov, Oleg
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2018), PT II, 2018, 11315 : 221 - 232
  • [47] Reproducing kernel Hilbert spaces cannot contain all continuous functions on a compact metric space
    Ingo Steinwart
    Archiv der Mathematik, 2024, 122 : 553 - 557
  • [48] A reproducing kernel space model for Nκ-functions
    Derkach, V
    Hassi, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) : 3795 - 3806
  • [49] Reproducing Kernel Hilbert Spaces of Polyanalytic Functions of Infinite Order
    Daniel Alpay
    Fabrizio Colombo
    Kamal Diki
    Irene Sabadini
    Integral Equations and Operator Theory, 2022, 94
  • [50] Reproducing Kernel Hilbert Spaces of Smooth Fractal Interpolation Functions
    Luor, Dah-Chin
    Hsieh, Liang-Yu
    FRACTAL AND FRACTIONAL, 2023, 7 (05)