Kernel center adaptation in the reproducing kernel Hilbert space embedding method

被引:7
|
作者
Paruchuri, Sai Tej [1 ]
Guo, Jia [2 ]
Kurdila, Andrew [3 ]
机构
[1] Lehigh Univ, Mech Engn & Mech, Bethlehem, PA 18015 USA
[2] Georgia Tech, Elect & Comp Engn, Atlanta, GA USA
[3] Virginia Tech, Mech Engn, Blacksburg, VA USA
关键词
adaptive estimation; centroidal Voronoi tessellations; Kohonen self-organizing maps; Lloyd's algorithm; persistence of excitation; reproducing kernel Hilbert space; NEURAL-NETWORK; GAUSSIAN-PROCESSES; IDENTIFICATION;
D O I
10.1002/acs.3407
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of adaptive estimators that employ embedding in reproducing kernel Hilbert spaces (RKHS) depends on the choice of the location of basis kernel centers. Parameter convergence and error approximation rates depend on where and how the kernel centers are distributed in the state-space. In this article, we develop the theory that relates parameter convergence and approximation rates to the position of kernel centers. We develop criteria for choosing kernel centers in a specific class of systems by exploiting the fact that the state trajectory regularly visits the neighborhood of the positive limit set. Two algorithms, based on centroidal Voronoi tessellations and Kohonen self-organizing maps, are derived to choose kernel centers in the RKHS embedding method. Finally, we implement these methods on two practical examples and test their effectiveness.
引用
收藏
页码:1562 / 1583
页数:22
相关论文
共 50 条
  • [1] Step size adaptation in reproducing kernel Hilbert space
    Vishwanathan, S. V. N.
    Schraudolph, Nicol N.
    Smola, Alex J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1107 - 1133
  • [2] Approximations of the Reproducing Kernel Hilbert Space (RKHS) Embedding Method over Manifolds
    Guo, Jia
    Paruchuri, Sai Tej
    Kurdila, Andrew J.
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1596 - 1601
  • [3] A New Application Of Reproducing Kernel Hilbert Space Method
    Akgul, A.
    Sakar, M. Giyas
    [J]. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [4] An Example of a Reproducing Kernel Hilbert Space
    Tutaj, Edward
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (01) : 193 - 221
  • [5] An Example of a Reproducing Kernel Hilbert Space
    Edward Tutaj
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 193 - 221
  • [6] A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space
    Viet-Hung Dang
    Ngo Anh Vien
    TaeChoong Chung
    [J]. Genetic Programming and Evolvable Machines, 2019, 20 : 479 - 501
  • [7] A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space
    Viet-Hung Dang
    Ngo Anh Vien
    Chung, TaeChoong
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2019, 20 (04) : 479 - 501
  • [8] A reproducing kernel Hilbert space approach in meshless collocation method
    Babak Azarnavid
    Mahdi Emamjome
    Mohammad Nabati
    Saeid Abbasbandy
    [J]. Computational and Applied Mathematics, 2019, 38
  • [9] Representation for the reproducing kernel Hilbert space method for a nonlinear system
    Akgul, Esra Karatas
    Akgul, Ali
    Khan, Yasir
    Baleanu, Dumitru
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (05): : 1345 - 1355
  • [10] Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems
    Paruchuri, Sai Tej
    Guo, Jia
    Kurdila, Andrew
    [J]. NONLINEAR DYNAMICS, 2020, 101 (02) : 1397 - 1415