Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems

被引:9
|
作者
Paruchuri, Sai Tej [1 ]
Guo, Jia [1 ]
Kurdila, Andrew [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24060 USA
关键词
Reproducing kernels; RKHS; Piezoelectric oscillators; Nonlinear oscillator; Data-driven modeling; LONGITUDINAL VIBRATIONS; IDENTIFICATION; ACTUATORS; HYSTERESIS; BEAM; MECHANISM; DYNAMICS; BEHAVIOR; DRIVEN; MODE;
D O I
10.1007/s11071-020-05812-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nonlinearities in piezoelectric systems can arise from internal factors such as nonlinear constitutive laws or external factors like realizations of boundary conditions. It can be difficult or even impossible to derive detailed models from the first principles of all the sources of nonlinearity in a system. This paper introduces adaptive estimator techniques to approximate the nonlinearities that can arise in certain classes of piezoelectric systems. Here an underlying structural assumption is that the nonlinearities can be modeled as continuous functions in a reproducing kernel Hilbert space (RKHS). This approach can be viewed as a data-driven method to approximate the unknown nonlinear system. This paper introduces the theory behind the adaptive estimator, discusses precise conditions that guarantee convergence of the function estimates, and studies the effectiveness of this approach numerically for a class of nonlinear piezoelectric composite beams.
引用
收藏
页码:1397 / 1415
页数:19
相关论文
共 50 条
  • [1] Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems
    Sai Tej Paruchuri
    Jia Guo
    Andrew Kurdila
    Nonlinear Dynamics, 2020, 101 : 1397 - 1415
  • [2] Adaptive Estimation in Reproducing Kernel Hilbert Spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5678 - 5683
  • [3] Kernel center adaptation in the reproducing kernel Hilbert space embedding method
    Paruchuri, Sai Tej
    Guo, Jia
    Kurdila, Andrew
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (07) : 1562 - 1583
  • [4] Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 869 - 896
  • [5] Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces
    Parag Bobade
    Suprotim Majumdar
    Savio Pereira
    Andrew J. Kurdila
    John B. Ferris
    Advances in Computational Mathematics, 2019, 45 : 869 - 896
  • [6] Adaptive Control via Embedding in Reproducing Kernel Hilbert Spaces
    Kurdila, Andrew
    Lei, Yu
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3384 - 3389
  • [7] Reproducing kernel Hilbert space based estimation of systems of ordinary differential equations
    Gonzalez, Javier
    Vujacic, Ivan
    Wit, Ernst
    PATTERN RECOGNITION LETTERS, 2014, 45 : 26 - 32
  • [8] Adaptive estimation of external fields in reproducing kernel Hilbert spaces
    Guo, Jia
    Kepler, Michael E.
    Tej Paruchuri, Sai
    Wang, Hoaran
    Kurdila, Andrew J.
    Stilwell, Daniel J.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (08) : 1931 - 1957
  • [9] Approximations of the Reproducing Kernel Hilbert Space (RKHS) Embedding Method over Manifolds
    Guo, Jia
    Paruchuri, Sai Tej
    Kurdila, Andrew J.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1596 - 1601
  • [10] An Example of a Reproducing Kernel Hilbert Space
    Tutaj, Edward
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (01) : 193 - 221