Approximations of the Reproducing Kernel Hilbert Space (RKHS) Embedding Method over Manifolds

被引:0
|
作者
Guo, Jia [1 ]
Paruchuri, Sai Tej [1 ]
Kurdila, Andrew J. [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24060 USA
来源
2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2020年
关键词
INTERPOLATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The reproducing kernel Hilbert space (RKHS) embedding method is a recently introduced estimation approach that seeks to identify the unknown or uncertain function in the governing equations of a nonlinear set of ordinary differential equations (ODEs). While the original state estimate evolves in Euclidean space, the function estimate is constructed in an infinite dimensional RKHS and must be approximated in practice. When a finite dimensional approximation is constructed using a basis defined in terms of shifted kernel functions centered at the observations along a trajectory, the RKHS embedding method can be understood as a data-driven approach. This paper derives sufficient conditions that ensure that approximations of the unknown function converge in a Sobolev norm over a submanifold that supports the dynamics. Moreover, the rate of convergence for the finite dimensional approximations is derived in terms of the fill distance of the samples in the embedded manifold. A numerical simulation of an example problem is carried out to illustrate the qualitative nature of convergence results derived in the paper.
引用
收藏
页码:1596 / 1601
页数:6
相关论文
共 50 条
  • [1] Kernel center adaptation in the reproducing kernel Hilbert space embedding method
    Paruchuri, Sai Tej
    Guo, Jia
    Kurdila, Andrew
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (07) : 1562 - 1583
  • [2] An efficient multiple kernel learning in reproducing kernel Hilbert spaces (RKHS)
    Xu, Lixiang
    Luo, Bin
    Tang, Yuanyan
    Ma, Xiaohua
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (02)
  • [3] Variational reproducing kernel Hilbert space (RKHS) grid method for quantum mechanical bound-state problems
    Hu, XG
    Ho, TS
    Rabitz, H
    CHEMICAL PHYSICS LETTERS, 1998, 288 (5-6) : 719 - 726
  • [4] A New Application Of Reproducing Kernel Hilbert Space Method
    Akgul, A.
    Sakar, M. Giyas
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [5] Reproducing kernel Hilbert spaces (RKHS) for the higher order Bessel operator
    Soltani, Fethi
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [6] Reproducing kernel Hilbert spaces (RKHS) for the higher order Bessel operator
    Fethi Soltani
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [7] Adaptive Inverse Control of Neural Spatiotemporal Spike Patterns With a Reproducing Kernel Hilbert Space (RKHS) Framework
    Li, Lin
    Park, Il Memming
    Brockmeier, Austin
    Chen, Badong
    Seth, Sohan
    Francis, Joseph T.
    Sanchez, Justin C.
    Principe, Jose C.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2013, 21 (04) : 532 - 543
  • [8] A Reproducing Kernel Hilbert Space (RKHS) approach to the optimal modeling, identification, and design of nonlinear adaptive systems
    de Figueiredo, RJP
    IEEE 2000 ADAPTIVE SYSTEMS FOR SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL SYMPOSIUM - PROCEEDINGS, 2000, : 42 - 47
  • [9] Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems
    Paruchuri, Sai Tej
    Guo, Jia
    Kurdila, Andrew
    NONLINEAR DYNAMICS, 2020, 101 (02) : 1397 - 1415
  • [10] Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems
    Sai Tej Paruchuri
    Jia Guo
    Andrew Kurdila
    Nonlinear Dynamics, 2020, 101 : 1397 - 1415