Approximations of the Reproducing Kernel Hilbert Space (RKHS) Embedding Method over Manifolds

被引:0
|
作者
Guo, Jia [1 ]
Paruchuri, Sai Tej [1 ]
Kurdila, Andrew J. [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24060 USA
来源
2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2020年
关键词
INTERPOLATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The reproducing kernel Hilbert space (RKHS) embedding method is a recently introduced estimation approach that seeks to identify the unknown or uncertain function in the governing equations of a nonlinear set of ordinary differential equations (ODEs). While the original state estimate evolves in Euclidean space, the function estimate is constructed in an infinite dimensional RKHS and must be approximated in practice. When a finite dimensional approximation is constructed using a basis defined in terms of shifted kernel functions centered at the observations along a trajectory, the RKHS embedding method can be understood as a data-driven approach. This paper derives sufficient conditions that ensure that approximations of the unknown function converge in a Sobolev norm over a submanifold that supports the dynamics. Moreover, the rate of convergence for the finite dimensional approximations is derived in terms of the fill distance of the samples in the embedded manifold. A numerical simulation of an example problem is carried out to illustrate the qualitative nature of convergence results derived in the paper.
引用
收藏
页码:1596 / 1601
页数:6
相关论文
共 50 条
  • [31] Utilization of Reproducing Kernel Hilbert Space Method on the Survival Data of Leukemia Patients
    Manaf, N. Abdul
    Ibragimov, G.
    Abu Bakar, M. R.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 167 - 172
  • [32] Reproducing kernel Hilbert space method for optimal interpolation of potential field data
    Maltz, J
    Koch, RD
    Willis, A
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (12) : 1725 - 1730
  • [33] REGULARIZATION METHOD FOR THE GENERALIZED MOMENT PROBLEM IN A FUNCTIONAL REPRODUCING KERNEL HILBERT SPACE
    Liu, Qianru
    Huang, Lei
    Wang, Rui
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (01) : 61 - 80
  • [34] Solutions of Nonlinear System of Differential Equations by Reproducing Kernel Hilbert Space Method
    Akgul, Esra Karatas
    JOURNAL OF ADVANCED PHYSICS, 2018, 7 (01) : 1 - 8
  • [35] Reproducing kernel Hilbert space method for solving fractal fractional differential equations
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    Riaz, Muhammad Bilal
    RESULTS IN PHYSICS, 2022, 35
  • [36] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588
  • [37] Sampling Theory in Abstract Reproducing Kernel Hilbert Space
    Yoon Mi Hong
    Jong Min Kim
    Kil H. Kwon
    Sampling Theory in Signal and Image Processing, 2007, 6 (1): : 109 - 121
  • [38] On some problems for operators on the reproducing kernel Hilbert space
    Garayev, M. T.
    Guediri, H.
    Gurdal, M.
    Alsahli, G. M.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2059 - 2077
  • [39] Fast quantile regression in reproducing kernel Hilbert space
    Songfeng Zheng
    Journal of the Korean Statistical Society, 2022, 51 : 568 - 588
  • [40] An explicit construction of a reproducing Gaussian kernel Hilbert space
    Xu, Jian-Wu
    Pokharel, Puskal P.
    Jeong, Kyu-Hwa
    Principe, Jose C.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5431 - 5434